147 resultados para density dependent thinning
em Université de Lausanne, Switzerland
Resumo:
1. Wind pollination is thought to have evolved in response to selection for mechanisms to promote pollination success, when animal pollinators become scarce or unreliable. We might thus expect wind-pollinated plants to be less prone to pollen limitation than their insect-pollinated counterparts. Yet, if pollen loads on stigmas of wind-pollinated species decline with distance from pollen donors, seed set might nevertheless be pollen-limited in populations of plants that cannot self-fertilize their progeny, but not in self-compatible hermaphroditic populations.2. Here, we test this hypothesis by comparing pollen limitation between dioecious and hermaphroditic (monoecious) populations of the wind-pollinated herb Mercurialis annua.3. In natural populations, seed set was pollen-limited in low-density patches of dioecious, but not hermaphroditic, M. annua, a finding consistent with patterns of distance-dependent seed set by females in an experimental array. Nevertheless, seed set was incomplete in both dioecious and hermaphroditic populations, even at high local densities. Further, both factors limited the seed set of females and hermaphrodites, after we manipulated pollen and resource availability in a common garden experiment.4. Synthesis. Our results are consistent with the idea that pollen limitation plays a role in the evolution of combined vs. separate sexes in M. annua. Taken together, they point to the potential importance of pollen transfer between flowers on the same plant (geitonogamy) by wind as a mechanism of reproductive assurance and to the dual roles played by pollen and resource availability in limiting seed set. Thus, seed set can be pollen-limited in sparse populations of a wind-pollinated species, where mates are rare or absent, having potentially important demographic and evolutionary implications.
Resumo:
r/K theory classically predicts that offspring size should increase under density-dependent selection. However, this is questionable, being based on implicit rather than explicit assumption (the logistic model does not include offsring size as a parameter). From recent models of optimal offspring size (Sibly & Calow, 1983; Taylor & Williams, 1984) it can be shown that density should select for larger offspring if density-dependence in the per capita rate of increase is mainly due to a reduction of the juvenile growth rate or survivorship. In contrast, density should select for smaller offspring if such density-dependence is mainly due to a reduction of adult fecundity or survivorship. Therfore, the outcome of selection cannot be predicted without precise knowledge of the density-dependence of age-specific reproduction and mortality rates. To test the above models, genetically identical individuals of Simocephalus vetulus (Müller) were reared in a density gradient; density-dependence in the per capita rate of increase was shown to be mainly due to a reduction of the juvenile growth rate, thereby selecting for larger offspring; offspring size at birth appeared to be phenotypically plastic and to increase with density. Models were therefore qualitatively supported. However, a discrepancy occurred in quantitative predictions; offspring were produced larger than predicted. Field and laboratory studies are suggested to address this.
Resumo:
The population density of an organism is one of the main aspects of its environment, and shoud therefore strongly influence its adaptive strategy. The r/K theory, based on the logistic model, was developed to formalize this influence. K-selectioon is classically thought to favour large body sizes. This prediction, however, cannot be directly derived from the logistic model: some auxiliary hypotheses are therefor implicit. These are to be made explicit if the theory is to be tested. An alternative approach, based on the Euler-Lotka equation, shows that density itself is irrelevant, but that the relative effect of density on adult and juvenile features is crucial. For instance, increasing population will select for a smaller body size if the density affects mainly juvenile growth and/or survival. In this case, density shoud indeed favour large body sizes. The theory appears nevertheless inconsistent, since a probable consequence of increasing body size will be a decrease in the carrying capacity
Resumo:
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations.
Resumo:
Limited dispersal may favor the evolution of helping behaviors between relatives as it increases their relatedness, and it may inhibit such evolution as it increases local competition between these relatives. Here, we explore one way out of this dilemma: if the helping behavior allows groups to expand in size, then the kin-competition pressure opposing its evolution can be greatly reduced. We explore the effects of two kinds of stochasticity allowing for such deme expansion. First, we study the evolution of helping under environmental stochasticity that may induce complete patch extinction. Helping evolves if it results in a decrease in the probability of extinction or if it enhances the rate of patch recolonization through propagules formed by fission of nonextinct groups. This mode of dispersal is indeed commonly found in social species. Second, we consider the evolution of helping in the presence of demographic stochasticity. When fecundity is below its value maximizing deme size (undersaturation), helping evolves, but under stringent conditions unless positive density dependence (Allee effect) interferes with demographic stochasticity. When fecundity is above its value maximizing deme size (oversaturation), helping may also evolve, but only if it reduces negative density-dependent competition.
Resumo:
Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely.
Resumo:
There is mounting evidence that organic or inorganic enrichment of aquatic environments increases the risk of infectious diseases, with disease agents ranging from helminth parasites to fungal, bacterial, and viral pathogens. The causal link between microbial resource availability and disease risk is thought to be complex and, in the case of so-called "opportunistic pathogens," to involve additional stressors that weaken host resistance (e.g., temperature shifts or oxygen deficiencies). In contrast to this perception, our experiment shows that the link between resource levels and infection of fish embryos can be very direct: increased resource availability can transform benign microbial communities into virulent ones. We find that embryos can be harmed before further stresses (e.g., oxygen depletion) weaken them, and treatment with antibiotics and fungicides cancels the detrimental effects. The changed characteristics of symbiotic microbial communities could simply reflect density-dependent relationships or be due to a transition in life-history strategy. Our findings demonstrate that simple microhabitat changes can be sufficient to turn "opportunistic" into virulent pathogens.
Resumo:
Despite their limited proliferation capacity, regulatory T cells (T(regs)) constitute a population maintained over the entire lifetime of a human organism. The means by which T(regs) sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of T(regs): precursor CD4(+)CD25(+)CD45RO(-) and mature CD4(+)CD25(+)CD45RO(+) cells. The lifelong dynamics of T(regs) are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4(+)CD25(+)FoxP3(+)T(regs) population is maintained over both precursor and mature T(regs) pools together, and (2) the ratio between precursor and mature T(regs) is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature T(regs) is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of T(regs) is essential for the development and the maintenance of the pool; there exist other sources of mature T(regs), such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived T(regs), and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of T(regs). This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.
Resumo:
Among biocontrol agents that are able to suppress root diseases caused by fungal pathogens, root-colonizing fluorescent pseudomonads have received particular attention because many strains of these bacteria trigger systemic resistance in host plants and produce antifungal compounds and exoenzymes. In general, the expression of these plant-beneficial traits is regulated by autoinduction mechanisms and may occur on roots when the pseudomonads form microcolonies. Three major classes of antibiotic compounds reviewed here in detail (2,4-diacetylphloroglucinol, pyoluteorin and various phenazine compounds) are all produced under cell population density-dependent autoinduction control acting at transcriptional and post-transcriptional levels. This regulation can either be reinforced or attenuated by a variety of chemical signals emanating from the pseudomonads themselves, other microorganisms or root exudates. Signals stimulating biocontrol factor expression via the Gac/Rsm signal transduction pathway in the biocontrol strain Pseudomonas fluorescens CHA0 are synthesized by many different plant-associated bacteria, warranting a more detailed investigation in the future.
Resumo:
In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.
Resumo:
When all three separate quorum-sensing signals act in concert in Vibrio harveyi, they maximize bioluminescence and fully repress type III secretion. V. harveyi has five qrr loci encoding small RNA regulatory molecules, each consisting of about 100 nucleotides; several of them are involved in repressing bioluminescence. Small RNAs also play roles in population density-dependent activities, including regulation of virulence factors, for bacterial pathogens such as Pseudomonas fluorescens, V. cholerae, Salmonella enterica, Pseudomonas aeruginosa, and Erwinia spp. Although some bacteria appear to carry redundant copies of small RNA genes with which to finely tune expression
Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.
Resumo:
In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.
Resumo:
A major challenge in community ecology is a thorough understanding of the processes that govern the assembly and composition of communities in time and space. The growing threat of climate change to the vascular plant biodiversity of fragile ecosystems such as mountains has made it equally imperative to develop comprehensive methodologies to provide insights into how communities are assembled. In this perspective, the primary objective of this PhD thesis is to contribute to the theoretical and methodological development of community ecology, by proposing new solutions to better detect the ecological and evolutionary processes that govern community assembly. As phylogenetic trees provide by far, the most advanced tools to integrate the spatial, ecological and evolutionary dynamics of plant communities, they represent the cornerstone on which this work was based. In this thesis, I proposed new solutions to: (i) reveal trends in community assembly on phylogenies, depicted by the transition of signals at the nodes of the different species and lineages responsible for community assembly, (ii) contribute to evidence the importance of evolutionarily labile traits in the distribution of mountain plant species. More precisely, I demonstrated that phylogenetic and functional compositional turnover in plant communities was driven by climate and human land use gradients mostly influenced by evolutionarily labile traits, (iii) predict and spatially project the phylogenetic structure of communities using species distribution models, to identify the potential distribution of phylogenetic diversity, as well as areas of high evolutionary potential along elevation. The altitudinal setting of the Diablerets mountains (Switzerland) provided an appropriate model for this study. The elevation gradient served as a compression of large latitudinal variations similar to a collection of islands within a single area, and allowed investigations on a large number of plant communities. Overall, this thesis highlights that stochastic and deterministic environmental filtering processes mainly influence the phylogenetic structure of plant communities in mountainous areas. Negative density-dependent processes implied through patterns of phylogenetic overdispersion were only detected at the local scale, whereas environmental filtering implied through phylogenetic clustering was observed at both the regional and local scale. Finally, the integration of indices of phylogenetic community ecology with species distribution models revealed the prospects of providing novel and insightful explanations on the potential distribution of phylogenetic biodiversity in high mountain areas. These results generally demonstrate the usefulness of phylogenies in inferring assembly processes, and are worth considering in the theoretical and methodological development of tools to better understand phylogenetic community structure.
Resumo:
The Simplon tunnel is a railway connection trough the Alps between Brig (Switzerland) and Iselle (Italy). Constructed at the beginning of the last century, it consists of two parallel, interconnected tunnels of 19.8 km each. Due to geothermal conditions, its temperature of 29°C is seasonally invariable. Stories about blind mice induced us to sample small mammals in the central part of the tunnel. We used 30 Longworth traps, set in 6 groups of 5 traps. After a prebaiting period of 2 weeks, the traps were opened during one night. We captured 10 Mus domesticus Rutty, 1772. A karyological analysis showed that they had the standard diploid number of 2n = 40, as mice from Brig. Mice from the Val d'Ossola (Italian side of the tunnel) had a karyotype of 2n = 24 with two specific Robertsonian fusion, Rb(5.8) and Rb(7.15). This "Domodossola race" belongs to the Lago Maggiore sub-groupe. As a conclusion, the tunnel colonisation took place from the north. With a density of about 5 - 10 mice per km, a rough estimate of the total tunnel population is about 200 - 400 mice. The few pick-nick left-overs from workers active in the tunnel cannot sustain such a population. It is concluded that the mice, as well as the regularly encountered Gryllus domesticus, are living from human faeces, dropped from the water closets of the trains. Low food resources, lack of predators and perhaps lack of accidents imply a density dependent population control, coupled with a low reproduction rate.
Resumo:
The global activator GacA, a highly conserved response regulator in Gram-negative bacteria, is required for the production of exoenzymes and secondary metabolites in Pseudomonas spp. The gacA gene of Pseudomonas aeruginosa PAO1 was isolated and its role in cell-density-dependent gene expression was characterized. Mutational inactivation of gacA resulted in delayed and reduced formation of the cell-density signal N-butyryl-L-homoserine lactone (BHL), of the cognate transcriptional activator RhIR (VsmR), and of the transcriptional activator LasR, which is known to positively regulate RhIR expression. Amplification of gacA on a multicopy plasmid caused precocious and enhanced production of BHL, RhIR and LasR. In parallel, the gacA gene dosage markedly influenced the BHL/RhIR-dependent formation of the cytotoxic compounds pyocyanin and cyanide and the exoenzyme lipase. However, the concentrations of another known cell-density signal of P. aeruginosa, N-oxododecanoyl-L-homoserine lactone, did not always match BHL concentrations. A model accounting for these observations places GacA function upstream of LasR and RhIR in the complex, cell-density-dependent signal-transduction pathway regulating several exoproducts and virulence factors of P. aeruginosa via BHL.