2 resultados para denoising
em Université de Lausanne, Switzerland
Resumo:
We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have proposed a global denoising of the diffusion data using spatial information prior to reconstruction, while others promote spatial regularisation through an additional empirical prior on the diffusion image at each q-space point. Our approach reconciles voxelwise sparsity and spatial regularisation and defines a spatially structured FOD sparsity prior, where the structure originates from the spatial coherence of the fibre orientation between neighbour voxels. The method is shown, through both simulated and real data, to enable accurate FOD reconstruction from a much lower number of q-space samples than the state of the art, typically 15 samples, even for quite adverse noise conditions.
Resumo:
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.