3 resultados para degenerative disease

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamin D is important for bone metabolism and neuromuscular function. While a routine dosage is often proposed in osteoporotic patients, it is not so evident in rheumatology outpatients where it has been shown that the prevalence of hypovitaminosis D is high. The aim of the current study was to systematically evaluate the vitamin D status in our outpatient rheumatology population to define the severity of the problem according to rheumatologic diseases. During November 2009, all patients were offered a screening test for 25-OH vitamin D levels and categorised as deficient (<10 µg/l [ng/ml] [25 nmol/l]), insufficient (10 µg/l to 30 µg/l [25 to 75 nmol/l]) or normal (>30 µg/l [75 nmol/l]). A total of 272 patients were included. The mean 25-OH vitamin D level was 21 µg/l (range 1.5 to 45.9). A total of 20 patients had vitamin D deficiency, 215 patients had an insufficiency and 37 patients had normal results. In the group of patients with osteoporosis mean level of 25-OH vitamin D was 25 µg/l and 31% had normal results. In patients with inflammatory rheumatic diseases (N = 219), the mean level of 25-OH vitamin D was 20.5 µg/l, and only 12% had normal 25-OH vitamin D levels. In the small group of patients with degenerative disease (N = 33), the mean level of 25-OH vitamin D was 21.8 µg/l, and 21% had normal results. Insufficiency and deficiency were even seen in 38% of the patients who were taking supplements. These results confirm that hypovitaminosis D is highly prevalent in an outpatient population of rheumatology patients, affecting 86% of subjects. Despite oral supplementation (taken in 38% of our population), only a quarter of those on oral supplementation attained normal values of 25-OH vitamin D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When emerging from the ribosomes, new polypeptides need to fold properly, eventually translocate, and then assemble into stable, yet functionally flexible complexes. During their lifetime, native proteins are often exposed to stresses that can partially unfold and convert them into stably misfolded and aggregated species, which can in turn cause cellular damage and propagate to other cells. In animal cells, especially in aged neurons, toxic aggregates may accumulate, induce cell death and lead to tissue degeneration via different mechanisms, such as apoptosis as in Parkinson's and Alzheimer's diseases and aging in general. The main cellular mechanisms effectively controlling protein homeostasis in youth and healthy adulthood are: (1) the molecular chaperones, acting as aggregate unfolding and refolding enzymes, (2) the chaperone-gated proteases, acting as aggregate unfolding and degrading enzymes, (3) the aggresomes, acting as aggregate compacting machineries, and (4) the autophagosomes, acting as aggregate degrading organelles. For unclear reasons, these cellular defences become gradually incapacitated with age, leading to the onset of degenerative diseases. Understanding these mechanisms and the reasons for their incapacitation in late adulthood is key to the design of new therapies against the progression of aging, degenerative diseases and cancers.