20 resultados para decoupling and matching network
em Université de Lausanne, Switzerland
Local adaptation and matching habitat choice in female barn owls with respect to melanic coloration.
Resumo:
Local adaptation is a major mechanism underlying the maintenance of phenotypic variation in spatially heterogeneous environments. In the barn owl (Tyto alba), dark and pale reddish-pheomelanic individuals are adapted to conditions prevailing in northern and southern Europe, respectively. Using a long-term dataset from Central Europe, we report results consistent with the hypothesis that the different pheomelanic phenotypes are adapted to specific local conditions in females, but not in males. Compared to whitish females, reddish females bred in sites surrounded by more arable fields and less forests. Colour-dependent habitat choice was apparently beneficial. First, whitish females produced more fledglings when breeding in wooded areas, whereas reddish females when breeding in sites with more arable fields. Second, cross-fostering experiments showed that female nestlings grew wings more rapidly when both their foster and biological mothers were of similar colour. The latter result suggests that mothers should particularly produce daughters in environments that best match their own coloration. Accordingly, whiter females produced fewer daughters in territories with more arable fields. In conclusion, females displaying alternative melanic phenotypes bred in habitats providing them with the highest fitness benefits. Although small in magnitude, matching habitat selection and local adaptation may help maintain variation in pheomelanin coloration in the barn owl.
Resumo:
The capacity to interact socially and share information underlies the success of many animal species, humans included. Researchers of many fields have emphasized the evo¬lutionary significance of how patterns of connections between individuals, or the social networks, and learning abilities affect the information obtained by animal societies. To date, studies have focused on the dynamics either of social networks, or of the spread of information. The present work aims to study them together. We make use of mathematical and computational models to study the dynamics of networks, where social learning and information sharing affect the structure of the population the individuals belong to. The number and strength of the relationships between individuals, in turn, impact the accessibility and the diffusion of the shared information. Moreover, we inves¬tigate how different strategies in the evaluation and choice of interacting partners impact the processes of knowledge acquisition and social structure rearrangement. First, we look at how different evaluations of social interactions affect the availability of the information and the network topology. We compare a first case, where individuals evaluate social exchanges by the amount of information that can be shared by the partner, with a second case, where they evaluate interactions by considering their partners' social status. We show that, even if both strategies take into account the knowledge endowments of the partners, they have very different effects on the system. In particular, we find that the first case generally enables individuals to accumulate higher amounts of information, thanks to the more efficient patterns of social connections they are able to build. Then, we study the effects that homophily, or the tendency to interact with similar partners, has on knowledge accumulation and social structure. We compare the case where individuals who know the same information are more likely to learn socially from each other, to the opposite case, where individuals who know different information are instead more likely to learn socially from each other. We find that it is not trivial to claim which strategy is better than the other. Depending on the possibility of forgetting information, the way new social partners can be chosen, and the population size, we delineate the conditions for which each strategy allows accumulating more information, or in a faster way For these conditions, we also discuss the topological characteristics of the resulting social structure, relating them to the information dynamics outcome. In conclusion, this work paves the road for modeling the joint dynamics of the spread of information among individuals and their social interactions. It also provides a formal framework to study jointly the effects of different strategies in the choice of partners on social structure, and how they favor the accumulation of knowledge in the population. - La capacité d'interagir socialement et de partager des informations est à la base de la réussite de nombreuses espèces animales, y compris les humains. Les chercheurs de nombreux domaines ont souligné l'importance évolutive de la façon dont les modes de connexions entre individus, ou réseaux sociaux et les capacités d'apprentissage affectent les informations obtenues par les sociétés animales. À ce jour, les études se sont concentrées sur la dynamique soit des réseaux sociaux, soit de la diffusion de l'information. Le présent travail a pour but de les étudier ensemble. Nous utilisons des modèles mathématiques et informatiques pour étudier la dynamique des réseaux, où l'apprentissage social et le partage d'information affectent la structure de la population à laquelle les individus appartiennent. Le nombre et la solidité des relations entre les individus ont à leurs tours un impact sur l'accessibilité et la diffusion de l'informa¬tion partagée. Par ailleurs, nous étudions comment les différentes stratégies d'évaluation et de choix des partenaires d'interaction ont une incidence sur les processus d'acquisition des connaissances ainsi que le réarrangement de la structure sociale. Tout d'abord, nous examinons comment des évaluations différentes des interactions sociales influent sur la disponibilité de l'information ainsi que sur la topologie du réseau. Nous comparons un premier cas, où les individus évaluent les échanges sociaux par la quantité d'information qui peut être partagée par le partenaire, avec un second cas, où ils évaluent les interactions en tenant compte du statut social de leurs partenaires. Nous montrons que, même si les deux stratégies prennent en compte le montant de connaissances des partenaires, elles ont des effets très différents sur le système. En particulier, nous constatons que le premier cas permet généralement aux individus d'accumuler de plus grandes quantités d'information, grâce à des modèles de connexions sociales plus efficaces qu'ils sont capables de construire. Ensuite, nous étudions les effets que l'homophilie, ou la tendance à interagir avec des partenaires similaires, a sur l'accumulation des connaissances et la structure sociale. Nous comparons le cas où des personnes qui connaissent les mêmes informations sont plus sus¬ceptibles d'apprendre socialement l'une de l'autre, au cas où les individus qui connaissent des informations différentes sont au contraire plus susceptibles d'apprendre socialement l'un de l'autre. Nous constatons qu'il n'est pas trivial de déterminer quelle stratégie est meilleure que l'autre. En fonction de la possibilité d'oublier l'information, la façon dont les nouveaux partenaires sociaux peuvent être choisis, et la taille de la population, nous déterminons les conditions pour lesquelles chaque stratégie permet d'accumuler plus d'in¬formations, ou d'une manière plus rapide. Pour ces conditions, nous discutons également les caractéristiques topologiques de la structure sociale qui en résulte, les reliant au résultat de la dynamique de l'information. En conclusion, ce travail ouvre la route pour la modélisation de la dynamique conjointe de la diffusion de l'information entre les individus et leurs interactions sociales. Il fournit également un cadre formel pour étudier conjointement les effets de différentes stratégies de choix des partenaires sur la structure sociale et comment elles favorisent l'accumulation de connaissances dans la population.
Resumo:
ABSTRACT : A firm's competitive advantage can arise from internal resources as well as from an interfirm network. -This dissertation investigates the competitive advantage of a firm involved in an innovation network by integrating strategic management theory and social network theory. It develops theory and provides empirical evidence that illustrates how a networked firm enables the network value and appropriates this value in an optimal way according to its strategic purpose. The four inter-related essays in this dissertation provide a framework that sheds light on the extraction of value from an innovation network by managing and designing the network in a proactive manner. The first essay reviews research in social network theory and knowledge transfer management, and identifies the crucial factors of innovation network configuration for a firm's learning performance or innovation output. The findings suggest that network structure, network relationship, and network position all impact on a firm's performance. Although the previous literature indicates that there are disagreements about the impact of dense or spare structure, as well as strong or weak ties, case evidence from Chinese software companies reveals that dense and strong connections with partners are positively associated with firms' performance. The second essay is a theoretical essay that illustrates the limitations of social network theory for explaining the source of network value and offers a new theoretical model that applies resource-based view to network environments. It suggests that network configurations, such as network structure, network relationship and network position, can be considered important network resources. In addition, this essay introduces the concept of network capability, and suggests that four types of network capabilities play an important role in unlocking the potential value of network resources and determining the distribution of network rents between partners. This essay also highlights the contingent effects of network capability on a firm's innovation output, and explains how the different impacts of network capability depend on a firm's strategic choices. This new theoretical model has been pre-tested with a case study of China software industry, which enhances the internal validity of this theory. The third essay addresses the questions of what impact network capability has on firm innovation performance and what are the antecedent factors of network capability. This essay employs a structural equation modelling methodology that uses a sample of 211 Chinese Hi-tech firms. It develops a measurement of network capability and reveals that networked firms deal with cooperation between, and coordination with partners on different levels according to their levels of network capability. The empirical results also suggests that IT maturity, the openness of culture, management system involved, and experience with network activities are antecedents of network capabilities. Furthermore, the two-group analysis of the role of international partner(s) shows that when there is a culture and norm gap between foreign partners, a firm must mobilize more resources and effort to improve its performance with respect to its innovation network. The fourth essay addresses the way in which network capabilities influence firm innovation performance. By using hierarchical multiple regression with data from Chinese Hi-tech firms, the findings suggest that there is a significant partial mediating effect of knowledge transfer on the relationships between network capabilities and innovation performance. The findings also reveal that the impacts of network capabilities divert with the environment and strategic decision the firm has made: exploration or exploitation. Network constructing capability provides a greater positive impact on and yields more contributions to innovation performance than does network operating capability in an exploration network. Network operating capability is more important than network constructing capability for innovative firms in an exploitation network. Therefore, these findings highlight that the firm can shape the innovation network proactively for better benefits, but when it does so, it should adjust its focus and change its efforts in accordance with its innovation purposes or strategic orientation.
Resumo:
Head and neck squamous cell cancer (HNSCC) is the sixth leading cause of cancer-related deaths worldwide. These tumors are commonly diagnosed at advanced stages and mortality rates remain high. Even cured patients suffer the consequences of aggressive treatment that includes surgery, chemotherapy, and radiotherapy. In the past, in clinical trials, HNSCC was considered as a single disease entity. Advances in molecular biology with the development of genomic and proteomic approaches have demonstrated distinct prognostic HNSCC patient subsets beyond those defined by traditional clinical-pathological factors such as tumor subsite and stage [Cho W (ed). An Omics Perspective on Cancer Research. New York/Berlin: Springer 2010]. Validation of these biomarkers in large prospective clinical trials is required before their clinical implementation. To promote this research, the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Program will develop the following strategies-(i) biobanking: prospective tissue collection from uniformly treated patients in the setting of clinical trials; (ii) a group of physicians, physician-scientists, and EORTC Headquarters staff devoted to patient-oriented head and neck cancer research; (iii) a collaboration between the basic scientists of the Translational Research Division interested in head and neck cancer research and the physicians of the Head and Neck Cancer Group; and (iv) funding through the EORTC Grant Program and the Network Core Institutions Consortium. In the present report, we summarize our strategic plans to promote head and neck cancer research within the EORTC framework.
Resumo:
Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.
Resumo:
Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.
Resumo:
A character network represents relations between characters from a text; the relations are based on text proximity, shared scenes/events, quoted speech, etc. Our project sketches a theoretical framework for character network analysis, bringing together narratology, both close and distant reading approaches, and social network analysis. It is in line with recent attempts to automatise the extraction of literary social networks (Elson, 2012; Sack, 2013) and other studies stressing the importance of character- systems (Woloch, 2003; Moretti, 2011). The method we use to build the network is direct and simple. First, we extract co-occurrences from a book index, without the need for text analysis. We then describe the narrative roles of the characters, which we deduce from their respective positions in the network, i.e. the discourse. As a case study, we use the autobiographical novel Les Confessions by Jean-Jacques Rousseau. We start by identifying co-occurrences of characters in the book index of our edition (Slatkine, 2012). Subsequently, we compute four types of centrality: degree, closeness, betweenness, eigenvector. We then use these measures to propose a typology of narrative roles for the characters. We show that the two parts of Les Confessions, written years apart, are structured around mirroring central figures that bear similar centrality scores. The first part revolves around the mentor of Rousseau; a figure of openness. The second part centres on a group of schemers, depicting a period of deep paranoia. We also highlight characters with intermediary roles: they provide narrative links between the societies in the life of the author. The method we detail in this complete case study of character network analysis can be applied to any work documented by an index. Un réseau de personnages modélise les relations entre les personnages d'un récit : les relations sont basées sur une forme de proximité dans le texte, l'apparition commune dans des événements, des citations dans des dialogues, etc. Notre travail propose un cadre théorique pour l'analyse des réseaux de personnages, rassemblant narratologie, close et distant reading, et analyse des réseaux sociaux. Ce travail prolonge les tentatives récentes d'automatisation de l'extraction de réseaux sociaux tirés de la littérature (Elson, 2012; Sack, 2013), ainsi que les études portant sur l'importance des systèmes de personnages (Woloch, 2003; Moretti, 2011). La méthode que nous utilisons pour construire le réseau est directe et simple. Nous extrayons les co-occurrences d'un index sans avoir recours à l'analyse textuelle. Nous décrivons les rôles narratifs des personnages en les déduisant de leurs positions relatives dans le réseau, donc du discours. Comme étude de cas, nous avons choisi le roman autobiographique Les Confessions, de Jean- Jacques Rousseau. Nous déduisons les co-occurrences entre personnages de l'index présent dans l'édition Slatkine (Rousseau et al., 2012). Sur le réseau obtenu, nous calculons quatre types de centralité : le degré, la proximité, l'intermédiarité et la centralité par vecteur propre. Nous utilisons ces mesures pour proposer une typologie des rôles narratifs des personnages. Nous montrons que les deux parties des Confessions, écrites à deux époques différentes, sont structurées autour de deux figures centrales, qui obtiennent des mesures de centralité similaires. La première partie est construite autour du mentor de Rousseau, qui a symbolisé une grande ouverture. La seconde partie se focalise sur un groupe de comploteurs, et retrace une période marquée par la paranoïa chez l'auteur. Nous mettons également en évidence des personnages jouant des rôles intermédiaires, et de fait procurant un lien narratif entre les différentes sociétés couvrant la vie de l'auteur. La méthode d'analyse des réseaux de personnages que nous décrivons peut être appliquée à tout texte de fiction comportant un index.
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
Background Area-based measures of socioeconomic position (SEP) suitable for epidemiological research are lacking in Switzerland. The authors developed the Swiss neighbourhood index of SEP (Swiss-SEP). Methods Neighbourhoods of 50 households with overlapping boundaries were defined using Census 2000 and road network data. Median rent per square metre, proportion households headed by a person with primary education or less, proportion headed by a person in manual or unskilled occupation and the mean number of persons per room were analysed in principle component analysis. The authors compared the index with independent income data and examined associations with mortality from 2001 to 2008. Results 1.27 million overlapping neighbourhoods were defined. Education, occupation and housing variables had loadings of 0.578, 0.570 and 0.362, respectively, and median rent had a loading of −0.459. Mean yearly equivalised income of households increased from SFr42 000 to SFr72 000 between deciles of neighbourhoods with lowest and highest SEP. Comparing deciles of neighbourhoods with lowest to highest SEP, the age- and sex-adjusted HR was 1.38 (95% CI 1.36 to 1.41) for all-cause mortality, 1.83 (95% CI 1.71 to 1.95) for lung cancer, 1.48 (95% CI 1.44 to 1.51) for cardiovascular diseases, 2.42 (95% CI 1.94 to 3.01) for traffic accidents, 0.93 (95% CI 0.85 to 1.02) for breast cancer and 0.86 (95% CI 0.78 to 0.95) for suicide. Conclusions Developed using a novel approach to define neighbourhoods, the Swiss-SEP index was strongly associated with household income and some causes of death. It will be useful for clinical- and population-based studies, where individual-level socioeconomic data are often missing, and to investigate the effects on health of the socioeconomic characteristics of a place.
Resumo:
Introduction: Building online courses is a highly time consuming task for teachers of a single university. Universities working alone create high-quality courses but often cannot cover all pathological fields. Moreover this often leads to duplication of contents among universities, representing a big waste of teacher time and energy. We initiated in 2011 a French university network for building mutualized online teaching pathology cases, and this network has been extended in 2012 to Quebec and Switzerland. Method: Twenty French universities (see & for details), University Laval in Quebec and University of Lausanne in Switzerland are associated to this project. One e-learning Moodle platform (http://moodle.sorbonne-paris-cite.fr/) contains texts with URL pointing toward virtual slides that are decentralized in several universities. Each university has the responsibility of its own slide scanning, slide storage and online display with virtual slide viewers. The Moodle website is hosted by PRES Sorbonne Paris Cité, and financial supports for hardware have been obtained from UNF3S (http://www.unf3s.org/) and from PRES Sorbonne Paris Cité. Financial support for international fellowships has been obtained from CFQCU (http://www.cfqcu.org/). Results: The Moodle interface has been explained to pathology teachers using web-based conferences with screen sharing. The teachers added then contents such as clinical cases, selfevaluations and other media organized in several sections by student levels and pathological fields. Contents can be used as online learning or online preparation of subsequent courses in classrooms. In autumn 2013, one resident from Quebec spent 6 weeks in France and Switzerland and created original contents in inflammatory skin pathology. These contents are currently being validated by senior teachers and will be opened to pathology residents in spring 2014. All contents of the website can be accessed for free. Most contents just require anonymous connection but some specific fields, especially those containing pictures obtained from patients who agreed for a teaching use only, require personal identification of the students. Also, students have to register to access Moodle tests. All contents are written in French but one case has been translated into English to illustrate this communication (http://moodle.sorbonne-pariscite.fr/mod/page/view.php?id=261) (use "login as a guest"). The Moodle test module allows many types of shared questions, making it easy to create personalized tests. Contents that are opened to students have been validated by an editorial committee composed of colleagues from the participating institutions. Conclusions: Future developments include other international fellowships, the next one being scheduled for one French resident from May to October 2014 in Quebec, with a study program centered on lung and breast pathology. It must be kept in mind that these e-learning programs highly depend on teachers' time, not only at these early steps but also later to update the contents. We believe that funding resident fellowships for developing online pathological teaching contents is a win-win situation, highly beneficial for the resident who will improve his knowledge and way of thinking, highly beneficial for the teachers who will less worry about access rights or image formats, and finally highly beneficial for the students who will get courses fully adapted to their practice.
Resumo:
Cooperation and coordination are desirable behaviors that are fundamental for the harmonious development of society. People need to rely on cooperation with other individuals in many aspects of everyday life, such as teamwork and economic exchange in anonymous markets. However, cooperation may easily fall prey to exploitation by selfish individuals who only care about short- term gain. For cooperation to evolve, specific conditions and mechanisms are required, such as kinship, direct and indirect reciprocity through repeated interactions, or external interventions such as punishment. In this dissertation we investigate the effect of the network structure of the population on the evolution of cooperation and coordination. We consider several kinds of static and dynamical network topologies, such as Baraba´si-Albert, social network models and spatial networks. We perform numerical simulations and laboratory experiments using the Prisoner's Dilemma and co- ordination games in order to contrast human behavior with theoretical results. We show by numerical simulations that even a moderate amount of random noise on the Baraba´si-Albert scale-free network links causes a significant loss of cooperation, to the point that cooperation almost vanishes altogether in the Prisoner's Dilemma when the noise rate is high enough. Moreover, when we consider fixed social-like networks we find that current models of social networks may allow cooperation to emerge and to be robust at least as much as in scale-free networks. In the framework of spatial networks, we investigate whether cooperation can evolve and be stable when agents move randomly or performing Le´vy flights in a continuous space. We also consider discrete space adopting purposeful mobility and binary birth-death process to dis- cover emergent cooperative patterns. The fundamental result is that cooperation may be enhanced when this migration is opportunistic or even when agents follow very simple heuristics. In the experimental laboratory, we investigate the issue of social coordination between indi- viduals located on networks of contacts. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in a social-like network than in a random network. In another experiment, we study the behavior of people who play a pure co- ordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population. Furthermore, we carry out an experiment with human subjects playing the Prisoner's Dilemma game in a diluted grid where people are able to move around. In contrast to previous results on purposeful rewiring in relational networks, we find no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting without a device such as reputation or the possibility of retaliation. i.e. punishment. Finally, we test experimentally the evolution of cooperation in social networks taking into ac- count a setting where we allow people to make or break links at their will. In this work we give particular attention to whether information on an individual's actions is freely available to poten- tial partners or not. Studying the role of information is relevant as information on other people's actions is often not available for free: a recruiting firm may need to call a job candidate's refer- ences, a bank may need to find out about the credit history of a new client, etc. We find that people cooperate almost fully when information on their actions is freely available to their potential part- ners. Cooperation is less likely, however, if people have to pay about half of what they gain from cooperating with a cooperator. Cooperation declines even further if people have to pay a cost that is almost equivalent to the gain from cooperating with a cooperator. Thus, costly information on potential neighbors' actions can undermine the incentive to cooperate in dynamical networks.
Resumo:
Abstract: Background: Cancer/testis (CT) genes are expressed only in the germ line and certain tumors and are most frequently located on the X-chromosome (the CT-X genes). Amongst the best studied CT-X genes are those encoding several MAGE protein families. The function of MAGE proteins is not well understood, but several have been shown to potentially influence the tumorigenic phenotype. Methodology/Principal Findings: We undertook a mutational analysis of coding regions of four CT-X MAGE genes, MAGEA1, MAGEA4, MAGEC1, MAGEC2 and the ubiquitously expressed MAGEE1 in human melanoma samples. We first examined cell lines established from tumors and matching blood samples from 27 melanoma patients. We found that melanoma cell lines from 37% of patients contained at least one mutated MAGE gene. The frequency of mutations in the coding regions of individual MAGE genes varied from 3.7% for MAGEA1 and MAGEA4 to 14.8% for MAGEC2. We also examined 111 fresh melanoma samples collected from 86 patients. In this case, samples from 32% of the patients exhibited mutations in one or more MAGE genes with the frequency of mutations in individual MAGE genes ranging from 6% in MAGEA1 to 16% in MAGEC1. Significance: These results demonstrate for the first time that the MAGE gene family is frequently mutated in melanoma.
Resumo:
Résumé du poster : Diabetes is both an important chronic disease and a real public health problem. It requires a great control over the body and a great mastery of the tools used in the daily struggle to reach a physiological balance. It is therefore a disease in which health education plays an important role, since patients are expected to reach a certain autonomy in the management of their disease. But how can the patients' autonomy be promoted? This is the question to which this study tried to answer from the perspective of socio-cultural psychology. The study was launched by the Cantonal Diabetes Program Vaud and aimed at evaluating a health education setting located in the east region of the Canton Vaud. It was based on both quantitative and qualitative methodological approaches. The results showed that there is a correlation between the number of hospitalizations and the quality of support provided by this particular health education setting. Moreover, the acquisition of expertise appears to be a distributed and collective process based upon the actors' active participation in various types of activities and involving and extended network. Further research is now required in order to examine how health education might be grasped through the lens of social-cultural psychology.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.