11 resultados para de Sitter spacetime
em Université de Lausanne, Switzerland
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
Chronic exposure to food of low quality may exert conflicting selection pressures on foraging behaviour. On the one hand, more active search behaviour may allow the animal to find patches with slightly better, or more, food; on the other hand, such active foraging is energetically costly, and thus may be opposed by selection for energetic efficiency. Here, we test these alternative hypotheses in Drosophila larvae. We show that populations which experimentally evolved improved tolerance to larval chronic malnutrition have shorter foraging path length than unselected control populations. A behavioural polymorphism in foraging path length (the rover-sitter polymorphism) exists in nature and is attributed to the foraging locus (for). We show that a sitter strain (for(s2)) survives better on the poor food than the rover strain (for(R)), confirming that the sitter foraging strategy is advantageous under malnutrition. Larvae of the selected and control populations did not differ in global for expression. However, a quantitative complementation test suggests that the for locus may have contributed to the adaptation to poor food in one of the selected populations, either through a change in for allele frequencies, or by interacting epistatically with alleles at other loci. Irrespective of its genetic basis, our results provide two independent lines of evidence that sitter-like foraging behaviour is favoured under chronic larval malnutrition.