4 resultados para ddc: 302.3
em Université de Lausanne, Switzerland
Resumo:
The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. WWW-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch
Resumo:
BACKGROUND: Adrenal insufficiency is a rare and potentially lethal disease if untreated. Several clinical signs and biological markers are associated with glucocorticoid failure but the importance of these factors for diagnosing adrenal insufficiency is not known. In this study, we aimed to assess the prevalence of and the factors associated with adrenal insufficiency among patients admitted to an acute internal medicine ward. METHODS: Retrospective, case-control study including all patients with high-dose (250 μg) ACTH-stimulation tests for suspected adrenal insufficiency performed between 2008 and 2010 in an acute internal medicine ward (n = 281). Cortisol values <550 nmol/l upon ACTH-stimulation test were considered diagnostic for adrenal insufficiency. Area under the ROC curve (AROC), sensitivity, specificity, negative and positive predictive values for adrenal insufficiency were assessed for thirteen symptoms, signs and biological variables. RESULTS: 32 patients (11.4%) presented adrenal insufficiency; the others served as controls. Among all clinical and biological parameters studied, history of glucocorticoid withdrawal was the only independent factor significantly associated with patients with adrenal insufficiency (Odds Ratio: 6.71, 95% CI: 3.08 -14.62). Using a logistic regression, a model with four significant and independent variable was obtained, regrouping history of glucocorticoid withdrawal (OR 7.38, 95% CI [3.18 ; 17.11], p-value <0.001), nausea (OR 3.37, 95% CI [1.03 ; 11.00], p-value 0.044), eosinophilia (OR 17.6, 95% CI [1.02; 302.3], p-value 0.048) and hyperkalemia (OR 2.41, 95% CI [0.87; 6.69], p-value 0.092). The AROC (95% CI) was 0.75 (0.70; 0.80) for this model, with 6.3 (0.8 - 20.8) for sensitivity and 99.2 (97.1 - 99.9) for specificity. CONCLUSIONS: 11.4% of patients with suspected adrenal insufficient admitted to acute medical ward actually do present with adrenal insufficiency, defined by an abnormal response to high-dose (250 μg) ACTH-stimulation test. A history of glucocorticoid withdrawal was the strongest factor predicting the potential adrenal failure. The combination of a history of glucocorticoid withdrawal, nausea, eosinophilia and hyperkaliemia might be of interest to suspect adrenal insufficiency.
Resumo:
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Resumo:
Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS.