35 resultados para data accuracy
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Co-morbidity information derived from administrative data needs to be validated to allow its regular use. We assessed evolution in the accuracy of coding for Charlson and Elixhauser co-morbidities at three time points over a 5-year period, following the introduction of the International Classification of Diseases, 10th Revision (ICD-10), coding of hospital discharges.METHODS: Cross-sectional time trend evaluation study of coding accuracy using hospital chart data of 3'499 randomly selected patients who were discharged in 1999, 2001 and 2003, from two teaching and one non-teaching hospital in Switzerland. We measured sensitivity, positive predictive and Kappa values for agreement between administrative data coded with ICD-10 and chart data as the 'reference standard' for recording 36 co-morbidities.RESULTS: For the 17 the Charlson co-morbidities, the sensitivity - median (min-max) - was 36.5% (17.4-64.1) in 1999, 42.5% (22.2-64.6) in 2001 and 42.8% (8.4-75.6) in 2003. For the 29 Elixhauser co-morbidities, the sensitivity was 34.2% (1.9-64.1) in 1999, 38.6% (10.5-66.5) in 2001 and 41.6% (5.1-76.5) in 2003. Between 1999 and 2003, sensitivity estimates increased for 30 co-morbidities and decreased for 6 co-morbidities. The increase in sensitivities was statistically significant for six conditions and the decrease significant for one. Kappa values were increased for 29 co-morbidities and decreased for seven.CONCLUSIONS: Accuracy of administrative data in recording clinical conditions improved slightly between 1999 and 2003. These findings are of relevance to all jurisdictions introducing new coding systems, because they demonstrate a phenomenon of improved administrative data accuracy that may relate to a coding 'learning curve' with the new coding system.
Resumo:
BACKGROUND: Chest pain is a common complaint in primary care, with coronary heart disease (CHD) being the most concerning of many potential causes. Systematic reviews on the sensitivity and specificity of symptoms and signs summarize the evidence about which of them are most useful in making a diagnosis. Previous meta-analyses are dominated by studies of patients referred to specialists. Moreover, as the analysis is typically based on study-level data, the statistical analyses in these reviews are limited while meta-analyses based on individual patient data can provide additional information. Our patient-level meta-analysis has three unique aims. First, we strive to determine the diagnostic accuracy of symptoms and signs for myocardial ischemia in primary care. Second, we investigate associations between study- or patient-level characteristics and measures of diagnostic accuracy. Third, we aim to validate existing clinical prediction rules for diagnosing myocardial ischemia in primary care. This article describes the methods of our study and six prospective studies of primary care patients with chest pain. Later articles will describe the main results. METHODS/DESIGN: We will conduct a systematic review and IPD meta-analysis of studies evaluating the diagnostic accuracy of symptoms and signs for diagnosing coronary heart disease in primary care. We will perform bivariate analyses to determine the sensitivity, specificity and likelihood ratios of individual symptoms and signs and multivariate analyses to explore the diagnostic value of an optimal combination of all symptoms and signs based on all data of all studies. We will validate existing clinical prediction rules from each of the included studies by calculating measures of diagnostic accuracy separately by study. DISCUSSION: Our study will face several methodological challenges. First, the number of studies will be limited. Second, the investigators of original studies defined some outcomes and predictors differently. Third, the studies did not collect the same standard clinical data set. Fourth, missing data, varying from partly missing to fully missing, will have to be dealt with.Despite these limitations, we aim to summarize the available evidence regarding the diagnostic accuracy of symptoms and signs for diagnosing CHD in patients presenting with chest pain in primary care. REVIEW REGISTRATION: Centre for Reviews and Dissemination (University of York): CRD42011001170.
Resumo:
Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.
Resumo:
OBJECTIVE: To elucidate the diagnostic accuracy of granulocyte colony-stimulating factor (G-CSF), interleukin-8 (IL-8), and interleukin-1 receptor antagonist (IL-1ra) in identifying patients with sepsis among critically ill pediatric patients with suspected infection. DESIGN AND SETTING: Nested case-control study in a multidisciplinary neonatal and pediatric intensive care unit (PICU) PATIENTS: PICU patients during a 12-month period with suspected infection, and plasma available from the time of clinical suspicion (254 episodes, 190 patients). MEASUREMENTS AND RESULTS: Plasma levels of G-CSF, IL-8, and IL-1ra. Episodes classified on the basis of clinical and bacteriological findings into: culture-confirmed sepsis, probable sepsis, localized infection, viral infection, and no infection. Plasma levels were significantly higher in episodes of culture-confirmed sepsis than in episodes with ruled-out infection. The area under the receiver operating characteristic curve was higher for IL-8 and G-CSF than for IL-1ra. Combining IL-8 and G-CSF improved the diagnostic performance, particularly as to the detection of Gram-negative sepsis. Sensitivity was low (<50%) in detecting Staphylococcus epidermidis bacteremia or localized infections. CONCLUSIONS: In this heterogeneous population of critically ill children with suspected infection, a model combining plasma levels of IL-8 and G-CSF identified patients with sepsis. Negative results do not rule out S. epidermidis bacteremia or locally confined infectious processes. The model requires validation in an independent data-set.
Resumo:
SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.
Resumo:
Sentinel lymph node dissection (SLND) identifies melanoma patients with metastatic disease who would benefit from radical lymph node dissection (RLND). Rarely, patients with melanoma have an underlying lymphoproliferative disease, and melanoma metastases might develop as collision tumours in the sentinel lymph node (SLN). The aim of this study was to measure the incidence and examine the effect of collision tumours on the accuracy of SLND and on the validity of staging in this setting. Between 1998 and 2012, 750 consecutive SLNDs were performed in melanoma patients using the triple technique (lymphoscintigraphy, gamma probe and blue dye). The validity of SLND in collision tumours was analysed. False negativity was reflected by the disease-free survival. The literature was reviewed on collision tumours in melanoma. Collision tumours of melanoma and chronic lymphocytic leukaemia (CLL) were found in two SLN and in one RLND (0.4%). Subsequent RLNDs of SLND-positive cases were negative for melanoma. The patient with negative SLND developed relapse after 28 months with an inguinal lymph node metastasis of melanoma; RLND showed collision tumours. The literature review identified 12 cases of collision tumours. CLL was associated with increased melanoma incidence and reduced overall survival. This is, to our knowledge, the first assessment of the clinical value of SLND when collision tumours of melanoma and CLL are found. In this small series of three patients with both malignancies present in the same lymph node basin, lymphocytic infiltration of the CLL did not alter radioisotope uptake into the SLN. No false-negative result was observed. Our data suggest the validity of SLND in collision tumours, but given the rarity of the problem, further studies are necessary to confirm this reliability.
Resumo:
Background: The posterior circulation Acute Stroke Prognosis Early CT Score (pc-ASPECTS) and the combined Pons-midbrain score quantify the extent of early ischemic changes in the posterior circulation. We compared the prognostic accuracy of both scores if applied to CT angiography (CTA) source images (CTA-SI) of patients in the Basilar Artery International Cooperation Study (BASICS).Methods: BASICS was a prospective, observational, multi-centre, registry of consecutive patients who presented with acute symptomatic basilar artery occlusion (BAO). Functional outcome was assessed at 1 month. We applied pc-ASPECTS and the combined Pons-midbrain score to CTA-SI by 3-reader-consensus. Readers were blinded to clinical data. We performed multivariable logistic regression analysis, adjusting for thrombolysis, baseline NIHSS score and age, and used the output to derive ROC curves to compare the ability of both scores to discriminate patients with favourable (modified Rankin Scale [mRS] scores 0-3) from patients with unfavourable (mRS scores 4-6) functional outcome.Results: We reviewed CTAs of 158 patients (64% men, mean age 65 _ 15 years, median NIHSS score 25 [0-38], median GCS score 7 [3-15], median onset-to-CTA time 234 minutes [11-7380]). At 1 month, 40 (25%) patients had a favourable outcome, 49 (31%) had an unfavourable outcome (mRS score 4-5) and 69 (44%) were deceased. Both techniques of assessing CTA-SI hypoattenuation in the posterior circulation showed equally good discriminative value in predicting final outcome (C-statistics; area under ROC curve 0.74 versus 0.75, respectively; p_0.37). Pc-ASPECTS dichotomized at _6 versus _6 was an independent predictor of favourable functional outcome (RR _ 2.2; CI95 1.1-4.7; p _ 0.034).Conclusion: Compared to the combined Pons-midbrain score, the pc-ASPECTS score has similar prognostic accuracy to identify patients with a favourable functional outcome in BASICS. Dichotomized pc-ASPECTS (_6 versus _6) is an independent predictor of favourable functional outcome in this population. Author Disclosures: V. Puetz: None. A. Khomenko: None. M.D. Hill: None. I. Dzialowski: None. P. Michel: None. C. Weimar: None. C.A.C. Wijman: None. H. Mattle: None. K. Muir: None. T. Pfefferkorn: None. D. Tanne: None. S. Engelter: None. K. Szabo: None. A. Algra: None. A.M. Demchuk: None. W.J. Schonewille: None.
Resumo:
The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.
Resumo:
OBJECTIVE: The optimal coronary MR angiography sequence has yet to be determined. We sought to quantitatively and qualitatively compare four coronary MR angiography sequences. SUBJECTS AND METHODS. Free-breathing coronary MR angiography was performed in 12 patients using four imaging sequences (turbo field-echo, fast spin-echo, balanced fast field-echo, and spiral turbo field-echo). Quantitative comparisons, including signal-to-noise ratio, contrast-to-noise ratio, vessel diameter, and vessel sharpness, were performed using a semiautomated analysis tool. Accuracy for detection of hemodynamically significant disease (> 50%) was assessed in comparison with radiographic coronary angiography. RESULTS: Signal-to-noise and contrast-to-noise ratios were markedly increased using the spiral (25.7 +/- 5.7 and 15.2 +/- 3.9) and balanced fast field-echo (23.5 +/- 11.7 and 14.4 +/- 8.1) sequences compared with the turbo field-echo (12.5 +/- 2.7 and 8.3 +/- 2.6) sequence (p < 0.05). Vessel diameter was smaller with the spiral sequence (2.6 +/- 0.5 mm) than with the other techniques (turbo field-echo, 3.0 +/- 0.5 mm, p = 0.6; balanced fast field-echo, 3.1 +/- 0.5 mm, p < 0.01; fast spin-echo, 3.1 +/- 0.5 mm, p < 0.01). Vessel sharpness was highest with the balanced fast field-echo sequence (61.6% +/- 8.5% compared with turbo field-echo, 44.0% +/- 6.6%; spiral, 44.7% +/- 6.5%; fast spin-echo, 18.4% +/- 6.7%; p < 0.001). The overall accuracies of the sequences were similar (range, 74% for turbo field-echo, 79% for spiral). Scanning time for the fast spin-echo sequences was longest (10.5 +/- 0.6 min), and for the spiral acquisitions was shortest (5.2 +/- 0.3 min). CONCLUSION: Advantages in signal-to-noise and contrast-to-noise ratios, vessel sharpness, and the qualitative results appear to favor spiral and balanced fast field-echo coronary MR angiography sequences, although subjective accuracy for the detection of coronary artery disease was similar to that of other sequences.
Resumo:
Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses.
Resumo:
The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.
Resumo:
RATIONALE AND OBJECTIVES: To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. METHODS AND MATERIALS: A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. RESULTS: Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. CONCLUSIONS: (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind.
Resumo:
BACKGROUND: The purpose of the optic nerve sheath diameter (ONSD) research group project is to establish an individual patient-level database from high quality studies of ONSD ultrasonography for the detection of raised intracranial pressure (ICP), and to perform a systematic review and an individual patient data meta-analysis (IPDMA), which will provide a cutoff value to help physicians making decisions and encourage further research. Previous meta-analyses were able to assess the diagnostic accuracy of ONSD ultrasonography in detecting raised ICP but failed to determine a precise cutoff value. Thus, the ONSD research group was founded to synthesize data from several recent studies on the subject and to provide evidence on the diagnostic accuracy of ONSD ultrasonography in detecting raised ICP. METHODS: This IPDMA will be conducted in different phases. First, we will systematically search for eligible studies. To be eligible, studies must have compared ONSD ultrasonography to invasive intracranial devices, the current reference standard for diagnosing raised ICP. Subsequently, we will assess the quality of studies included based on the QUADAS-2 tool, and then collect and validate individual patient data. The objectives of the primary analyses will be to assess the diagnostic accuracy of ONSD ultrasonography and to determine a precise cutoff value for detecting raised ICP. Secondly, we will construct a logistic regression model to assess whether patient and study characteristics influence diagnostic accuracy. DISCUSSION: We believe that this IPD MA will provide the most reliable basis for the assessment of diagnostic accuracy of ONSD ultrasonography for detecting raised ICP and to provide a cutoff value. We also hope that the creation of the ONSD research group will encourage further study. TRIAL REGISTRATION: PROSPERO registration number: CRD42012003072.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.