4 resultados para cytoplasm vesicle
em Université de Lausanne, Switzerland
Resumo:
Stress, molecular crowding and mutations may jeopardize the native folding of proteins. Misfolded and aggregated proteins not only loose their biological activity, but may also disturb protein homeostasis, damage membranes and induce apoptosis. Here, we review the role of molecular chaperones as a network of cellular defenses against the formation of cytotoxic protein aggregates. Chaperones favour the native folding of proteins either as "holdases", sequestering hydrophobic regions in misfolding polypeptides, and/or as "unfoldases", forcibly unfolding and disentangling misfolded polypeptides from aggregates. Whereas in bacteria, plants and fungi Hsp70/40 acts in concert with the Hsp100 (ClpB) unfoldase, Hsp70/40 is the only known chaperone in the cytoplasm of mammalian cells that can forcibly unfold and neutralize cytotoxic protein conformers. Owing to its particular spatial configuration, the bulky 70 kDa Hsp70 molecule, when distally bound through a very tight molecular clamp onto a 50-fold smaller hydrophobic peptide loop extruding from an aggregate, can locally exert on the misfolded segment an unfolding force of entropic origin, thus destroying the misfolded structures that stabilize aggregates. ADP/ATP exchange triggers Hsp70 dissociation from the ensuing enlarged unfolded peptide loop, which is then allowed to spontaneously refold into a closer-to-native conformation devoid of affinity for the chaperone. Driven by ATP, the cooperative action of Hsp70 and its co-chaperone Hsp40 may thus gradually convert toxic misfolded protein substrates with high affinity for the chaperone, into non-toxic, natively refolded, low-affinity products. Stress- and mutation-induced protein damages in the cell, causing degenerative diseases and aging, may thus be effectively counteracted by a powerful network of molecular chaperones and of chaperone-related proteases.
Resumo:
L'ubiquitination est une modification des protéines conservée, consistant en l'addition de résidus « ubiquitine » et régulant le destin cellulaire des protéines. La protéine « TRAF-interacting protein » TRAIP (ou TRIP) est une ligase E3 qui catalyse l'étape finale de l'ubiquitination. TRAIP est conservé dans l'évolution et est nécessaire au développement des organismes puisque l'ablation de TRAIP conduit à la mort embryonnaire aussi bien de la drosophile que de la souris. De plus, la réduction de l'expression de TRAIP dans des kératinocytes épidermiques humains réprime la prolifération cellulaire et induit un arrêt du cycle cellulaire en phase Gl, soulignant le lien étroit entre TRAIP et la prolifération cellulaire. Comme les mécanismes de régulation de la prolifération jouent un rôle majeur dans l'homéostasie de la peau, il est important de caractériser la fonction de TRAIP dans ces mécanismes. En utilisant des approches in vitro, nous avons déterminé que la protéine TRAIP est instable, modifiée par l'addition d'ubiquitine et ayant une demi-vie d'environ 4 heures. Nos analyses ont également révélé que l'expression de TRAIP est dépendante du cycle cellulaire, atteignant un pic d'expression en phase G2/M et que l'induction de son expression s'effectue principalement au cours de la transition Gl/S. Nous avons identifié le facteur de transcription E2F1 comme en étant le responsable, en régulant directement le promoteur de TRAIP. Aussi, TRAIP endogène ou surexprimée est surtout localisée au niveau du nucléole, une organelle nucléaire qui est désassemblée pendant la division cellulaire. Pour examiner la localisation subcellulaire de TRAIP pendant la mitose, nous avons imagé la protéine TRAIP fusionnée à une protéine fluorescente, à l'intérieur de cellules vivantes nommées HeLa, à l'aide d'un microscope confocal. Dans ces conditions, TRAIP est majoritairement localisée autour des chromosomes en début de mitose, puis est arrangée au niveau de l'ADN chromosomique en fin de mitose. La détection de TRAIP endogène à l'aide d'un anticorps spécifique a confirmé cette localisation. Enfin, l'inactivation de TRAIP dans les cellules HeLa par interférence ARN a inhibé leur capacité à s'arrêter en milieu de mitose. Nos résultats suggèrent que le mécanisme sous-jacent peut être lié au point de contrôle de l'assemblage du fuseau mitotique. - Ubiquitination of proteins is a post-translational modification which decides the cellular fate of the protein. The TRAF-interacting protein (TRAIP, TRIP) functions as an E3 ubiquitin ligase mediating addition of ubiquitin moieties to proteins. TRAIP interacts with the deubiquitinase CYLD, a tumor suppressor whose functional inactivation leads to skin appendage tumors. TRAIP is required for early embryonic development since removal of TRAIP either in Drosophila or mice by mutations or knock¬out is lethal due to aberrant regulation of cell proliferation and apoptosis. Furthermore, shRNA- mediated knock-down of TRAIP in human epidermal keratinocytes (HEK) repressed cell proliferation and induced a Gl/S phase block in the cell cycle. Additionally, TRAIP expression is strongly down- regulated during keratinocyte differentiation supporting the notion of a tight link between TRAIP and cell proliferation. We thus examined the biological functions of TRAIP in epithelial cell proliferation. Using an in vitro approach, we could determine that the TRAIP protein is unstable, modified by addition of ubiquitin moieties after translation and exhibits a half-life of 3.7+/-1-6 hours. Our analysis revealed that the TRAIP expression is modulated in a cell-cycle dependent manner, reaching a maximum expression level in G2/M phases. In addition, the expression of TRAIP was particularly activated during Gl/S phase transition and we could identify the transcription factor E2F1 as an activator of the TRAIP gene promoter. Both endogenous and over-expressed TRAIP mainly localized to the nucleolus, a nuclear organelle which is disassembled during cell division. To examine the subcellular localization of TRAIP during M phase, we performed confocal live-cell imaging of a functional fluorescent protein TRAIP-GFP in HeLa cells. TRAIP was distributed in the cytoplasm and accumulated around mitotic chromosomes in pro- and meta-phasic cells. TRAIP was then confined to chromosomal DNA location in anaphase and later phases of mitosis. Immune-detection of endogenous TRAIP protein confirmed its particular localization in mitosis. Finally, inactivating TRAIP expression in HeLa cells using RNA interference abrogated the cells ability to stop or delay mitosis progression. Our results suggested that TRAIP may involve the spindle assembly checkpoint.
Resumo:
Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.
Resumo:
BACKGROUND: An important signal transduction pathway in plant defence depends on the accumulation of salicylic acid (SA). SA is produced in chloroplasts and the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5; At4g39030) is necessary for the accumulation of SA after pathogen and abiotic stress. EDS5 is localized at the chloroplast and functions in transporting SA from the chloroplast to the cytoplasm. EDS5 has a homologue called EDS5H (EDS5 HOMOLOGUE; At2g21340) but its relationship to EDS5 has not been described and its function is not known. RESULTS: EDS5H exhibits about 72% similarity and 59% identity to EDS5. In contrast to EDS5 that is induced after pathogen inoculation, EDS5H was constitutively expressed in all green tissues, independently of pathogen infection. Both transporters are located at the envelope of the chloroplast, the compartment of SA biosynthesis. EDS5H is not involved with the accumulation of SA after inoculation with a pathogen or exposure to UV stress. A phylogenetic analysis supports the hypothesis that EDS5H may be an H(+)/organic acid antiporter like EDS5. CONCLUSIONS: The data based on genetic and molecular studies indicate that EDS5H despite its homology to EDS5 does not contribute to pathogen-induced SA accumulation like EDS5. EDS5H most likely transports related substances such as for example phenolic acids, but unlikely SA.