7 resultados para crowdsourcing, urban-sensing, sensori android, database

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present and apply a semisupervised support vector machine based on cluster kernels for the problem of very high resolution image classification. In the proposed setting, a base kernel working with labeled samples only is deformed by a likelihood kernel encoding similarities between unlabeled examples. The resulting kernel is used to train a standard support vector machine (SVM) classifier. Experiments carried out on very high resolution (VHR) multispectral and hyperspectral images using very few labeled examples show the relevancy of the method in the context of urban image classification. Its simplicity and the small number of parameters involved make it versatile and workable by unexperimented users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing image processing is nowadays a mature research area. The techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics, and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, image coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This paper serves as a survey of methods and applications, and reviews the last methodological advances in remote sensing image processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents advanced classification methods for very high resolution images. Efficient multisource information, both spectral and spatial, is exploited through the use of composite kernels in support vector machines. Weighted summations of kernels accounting for separate sources of spectral and spatial information are analyzed and compared to classical approaches such as pure spectral classification or stacked approaches using all the features in a single vector. Model selection problems are addressed, as well as the importance of the different kernels in the weighted summation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problems related to fire hazard and fire management have become in recent decades one of the most relevant issues in the Wildland-Urban Interface (WUI), that is the area where human infrastructures meet or intermingle with natural vegetation. In this paper we develop a robust geospatial method for defining and mapping the WUI in the Alpine environment, where most interactions between infrastructures and wildland vegetation concern the fire ignition through human activities, whereas no significant threats exist for infrastructures due to contact with burning vegetation. We used the three Alpine Swiss cantons of Ticino, Valais and Grisons as the study area. The features representing anthropogenic infrastructures (urban or infrastructural components of the WUI) as well as forest cover related features (wildland component of the WUI) were selected from the Swiss Topographic Landscape Model (TLM3D). Georeferenced forest fire occurrences derived from the WSL Swissfire database were used to define suitable WUI interface distances. The Random Forest algorithm was applied to estimate the importance of predictor variables to fire ignition occurrence. This revealed that buildings and drivable roads are the most relevant anthropogenic components with respect to fire ignition. We consequently defined the combination of drivable roads and easily accessible (i.e. 100 m from the next drivable road) buildings as the WUI-relevant infrastructural component. For the definition of the interface (buffer) distance between WUI infrastructural and wildland components, we computed the empirical cumulative distribution functions (ECDF) of the percentage of ignition points (observed and simulated) arising at increasing distances from the selected infrastructures. The ECDF facilitates the calculation of both the distance at which a given percentage of ignition points occurred and, in turn, the amount of forest area covered at a given distance. Finally, we developed a GIS ModelBuilder routine to map the WUI for the selected buffer distance. The approach was found to be reproducible, robust (based on statistical analyses for evaluating parameters) and flexible (buffer distances depending on the targeted final area covered) so that fire managers may use it to detect WUI according to their specific priorities.