35 resultados para corpus, collocations, corpus linguistics, EPTIC
em Université de Lausanne, Switzerland
Resumo:
(Résumé de l'ouvrage) In 1953 the first fascicle of the first volume of the Corpus Christianorum was published. Now, fifty years later, this series has established itself as one of the great scientific enterprises in the field of patristic and medieval studies. We offer this birthday-present to ourselves, our old and new collaborators and our friends as a celebration of what has been achieved, as a survey of where we currently stand and as an insight into our future. The book opens with an essay on fifty years of the Corpus Christianorum. It tells the story of how the enterprise started as an ambitious yet limited project and how it developed into what it is today: a conglomerate of many different research projects located in different places all over the world. The second part presents a florilegium of patristic and medieval texts, all of which have been edited in the series, some only recently, others long ago. The selection has been made by a group of scholars representing the variety of interests reflected in the subseries of the Corpus Christianorum. At the end of the volume an Onomasticon has been added. It gives a complete survey of all the text-editions published to date. This "mini-clavis" will make it easier to find one's way in the library of the Corpus Christianorum.
Resumo:
Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia. In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for anophthalmia/microphthalmia. ©2011 Wiley Periodicals, Inc.
Resumo:
During the postnatal development of cat visual cortex and corpus callosum the molecular composition of tau proteins varied with age. In both structures, they changed between postnatal days 19 and 39 from a set of two juvenile forms to a set of at least two adult variants with higher molecular weights. During the first postnatal week, tau proteins were detectable with TAU-1 antibody in axons of corpus callosum and visual cortex, and in some perikarya and dendrites in the visual cortex. At later ages, tau proteins were located exclusively within axons in all cortical layers and in the corpus callosum. Dephosphorylation of postnatal day 11 cortical tissue by alkaline phosphatase strongly increased tau protein immunoreactivity on Western blots and in numerous perikarya and dendrites in all cortical layers, in sections, suggesting that some tau forms had been unmasked. During postnatal development the intensity of this phosphate-dependent somatodendritic staining decreased, but remained in a few neurons in cortical layers II and III. On blots, the immunoreactivity of adult tau to TAU-1 was only marginally increased by dephosphorylation. Other tau antibodies (TAU-2, B19 and BR133) recognized two juvenile and two adult cat tau proteins on blots, and localized tau in axons or perikarya and dendrites in tissue untreated with alkaline phosphatase. Tau proteins in mature tissue were soluble and not associated with detergent-resistant structures. Furthermore, dephosphorylation by alkaline phosphatase resulted in the appearance of more tau proteins in soluble fractions. Therefore tau proteins seem to alter their degree of phosphorylation during development. This could affect microtubule stability as well as influence axonal and dendritic differentiation.
Resumo:
The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.
Resumo:
Ce travail se propose de comparer le personnage de Merlin dans un corpus médiéval (Geoffroy de Monmouth; Wace, Roman de Brut; Merlin en prose; La Suite du Roman de Merlin) et un texte moderne (Blanche-Neige contre Merlin l'enchanteur de Catherine Dufour) à travers la problématique du bien et du mal. Savoir où se situe Merlin, entre Dieu et le diable, est essentiel dans les textes du Moyen Age, alors que cette préoccupation semble à priori dépassée dans un texte iconoclaste, tel que celui de Dufour. Il est pourtant possible de l'observer à de nombreuses reprises, notamment en ce qui concerne l'origine de l'enchanteur, ses pouvoirs, ses éclats de rire et le rôle qu'il joue dans la conception d'Arthur. En annexe, un entretien avec Catherine Dufour.
Resumo:
MAP5, a microtubule-associated protein characteristic of differentiating neurons, was studied in the developing visual cortex and corpus callosum of the cat. In juvenile cortical tissue, during the first month after birth, MAP5 is present as a protein doublet of molecular weights of 320 and 300 kDa, defined as MAP5a and MAP5b, respectively. MAP5a is the phosphorylated form. MAP5a decreases two weeks after birth and is no longer detectable at the beginning of the second postnatal month; MAP5b also decreases after the second postnatal week but more slowly and it is still present in the adult. In the corpus callosum only MAP5a is present between birth and the end of the first postnatal month. Afterwards only MAP5b is present but decreases in concentration more than 3-fold towards adulthood. Our immunocytochemical studies show MAP5 in somata, dendrites and axonal processes of cortical neurons. In adult tissue it is very prominent in pyramidal cells of layer V. In the corpus callosum MAP5 is present in axons at all ages. There is strong evidence that MAP5a is located in axons while MAP5b seems restricted to somata and dendrites until P28, but is found in callosal axons from P39 onwards. Biochemical experiments indicate that the state of phosphorylation of MAP5 influences its association with structural components. After high speed centrifugation of early postnatal brain tissue, MAP5a remains with pellet fractions while most MAP5b is soluble. In conclusion, phosphorylation of MAP5 may regulate (1) its intracellular distribution within axons and dendrites, and (2) its ability to interact with other subcellular components.
Resumo:
The cortical auditory fields of the two hemispheres are interconnected via the corpus callosum. We have investigated the topographical arrangement of auditory callosal axons in the cat. Following circumscribed biocytin injections in the primary (AI), secondary (AII), anterior (AAF) and posterior (PAF) auditory fields, labelled axons have been found in the posterior two-thirds of the corpus callosum. Callosal axons labelled by small individual cortical injections did not form a tight bundle at the callosal midsagittal plane but spread over as much as one-third of the corpus callosum. Axons originating from different auditory fields were roughly topographically ordered, reflecting to some extent the rostro-caudal position of the field of origin. Axons from AAF crossed on average more rostrally than axons from AI; the latter crossed more rostrally than axons from PAF and AII. Callosal axons originating in a discrete part of the cortex travelled first in a relatively tight bundle to the telo-diencephalic junction and then dispersed progressively. In conclusion, the cat corpus callosum does not contain a sector reserved for auditory axons, nor a strictly topographically ordered auditory pathway. This observation is of relevance to neuropsychological and neuropathological observations in man.
Resumo:
The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain.