7 resultados para copolymer (PVDF-TrFE)
em Université de Lausanne, Switzerland
Resumo:
Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block
Resumo:
An EGFP construct interacting with the PIB1000-PEG6000-PIB1000 vesicles surface reported a ~2-fold fluorescence emission enhancement. Because of the constructs nature with the amphiphilic peptide inserted into the PIB core, EGFP is expected to experience a "pure" PEG environment. To unravel this phenomenon PEG/water solutions at different molecular weights and concentrations were used. Already at ~1 : 10 protein/PEG molar ratio the increase in fluorescence emission is observed reaching a plateau correlating with the PEG molecular weight. Parallel experiments in presence of glycerol aqueous solutions did show a slight fluorescence enhancement however starting at much higher concentrations. Molecular dynamics simulations of EGFP in neat water, glycerol, and PEG aqueous solutions were performed showing that PEG molecules tend to "wrap" the protein creating a microenvironment where the local PEG concentration is higher compared to its bulk concentration. Because the fluorescent emission can be perturbed by the refractive index surrounding the protein, the clustering of PEG molecules induces an enhanced fluorescence emission already at extremely low concentrations. These findings can be important when related to the use of EGFP as reported in molecular biology experiments.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.
Resumo:
Static incubation tests, where microcapsules and beads are contacted with polymer and protein solutions, have been developed for the characterization of permselective materials applied for bioartificial organs and drug delivery. A combination of polymer ingress, detected by size-exclusion chromatography, and protein ingress/ egress, assessed by gel electrophoresis, provides information regarding the diffusion kinetics, molar mass cutoff(MMCO) and permeability. This represents an improvement over existing permeability measurements that are based on the diffusion of a single type of solute. Specifically, the permeability of capsules based on alginate, cellulose sulfate, polymethylene-co-guanidine were characterized as a function of membrane thickness. Solid alginate beads were also evaluated. The MMCO of these capsules was estimated to be between 80 and 90 kDa using polymers, and between 116-150 kDa with proteins. Apparently, the globular shape of the proteins (radius of gyration (Rg) of 4.2-4.6 nm) facilitates their passage through the membrane, comparatively to the polysaccharide coil conformation (Rg of 6.5-8.3 nm). An increase of the capsule membrane thickness reduced these values. The MMCO of the beads, which do not have a membrane limiting their permselective properties, was higher, between 110 and 200 kDa with dextrans, and between 150 and 220 kDa with proteins. Therefore, although the permeability estimated with biologically relevant molecules is generally higher due to their lower radius of gyration, both the MMCO of synthetic and natural watersoluble polymers correlate well, and can be used as in vitro metrics for the immune protection ability of microcapsules and microbeads. This article shows, to the authors' knowledge, the first reported concordance between permeability measures based on model natural and biological macromolecules.
Resumo:
Topical ocular drug delivery has always been a challenge for pharmaceutical technology scientists. In the last two decades, many nano-systems have been studied to find ways to overcome the typical problems of topical ocular therapy, such as difficult corneal penetration and poor drug availability. In this study, methoxy poly(ethylene glycol)-hexylsubstituted poly(lactides) (MPEG-hexPLA) micelle formulations, which are promising nanocarriers for poorly water soluble drugs, were investigated for the delivery of Cyclosporin A (CsA) to the eye. As a new possible pharmaceutical excipient, the ocular compatibility of MPEG-hexPLA micelle formulations was evaluated. An in vitro biocompatibility assessment on human corneal epithelial cells was carried out using different tests. Cytotoxicity was studied by using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), and clonogenic tests and revealed that the CsA formulations and copolymer solutions were not toxic. After incubation with MPEG-hexPLA micelle formulations, the activation of caspase-dependent and -independent apoptosis as well as autophagy was evaluated using immunohistochemistry by analyzing the localization of four antibodies: (1) anti-caspase 3; (2) anti-apoptotic inducing factor (AIF); (3) anti-IL-Dnase II and (4) anti-microtubule-associated protein 1 light chain 3 (LC3). No apoptosis was induced when the cells were treated with the micelle solutions that were either unloaded or loaded with CsA. The ocular tolerance was assessed in vivo on rabbit eyes by Confocal Laser Scanning Ophthalmoscopy (CLSO), and very good tolerability was seen. The observed corneal surface was comparable to a control surface that was treated with a 0.9% NaCl solution. In conclusion, these results demonstrate that MPEG-hexPLA micelles are promising drug carriers for ocular diseases involving the activation of cytokines, such as dry eye syndrome and autoimmune uveitis, or for the prevention of corneal graft rejection.
Resumo:
A sensitive method was developed for quantifying a wide range of cannabinoids in oral fluid (OF) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These cannabinoids include a dagger(9)-tetrahydrocannabinol (THC), 11-hydroxy-a dagger(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-a dagger(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), a dagger(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-a dagger(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc), and a dagger(9)-tetrahydrocannabinol glucuronide (THC-gluc). Samples were collected using a Quantisal (TM) device. The advantages of performing a liquid-liquid extraction (LLE) of KCl-saturated OF using heptane/ethyl acetate versus a solid-phase extraction (SPE) using HLB copolymer columns were determined. Chromatographic separation was achieved in 11.5 min on a Kinetex (TM) column packed with 2.6-mu m core-shell particles. Both positive (THC, 11-OH-THC, CBN, and CBD) and negative (THCCOOH, THC-gluc, THCCOOH-gluc, and THC-A) electrospray ionization modes were employed with multiple reaction monitoring using a high-end AB Sciex API 5000 (TM) triple quadrupole LC-MS/MS system. Unlike SPE, LLE failed to extract THC-gluc and THCCOOH-gluc. However, the LLE method was more sensitive for the detection of THCCOOH than the SPE method, wherein the limit of detection (LOD) and limit of quantification (LOQ) decreased from 100 to 50 pg/ml and from 500 to 80 pg/ml, respectively. The two extraction methods were successfully applied to OF samples collected from volunteers before and after they smoked a homemade cannabis joint. High levels of THC were measured soon after smoking, in addition to significant amounts of THC-A. Other cannabinoids were found in low concentrations. Glucuronide conjugate levels were lower than the method's LOD for most samples. Incubation studies suggest that glucuronides could be enzymatically degraded by glucuronidase prior to OF collection
Resumo:
An analysis of latent fingermark residues by Sodium-Dodecyl-Sulfate PolyAcrylamide Gel Electrophoresis (SDS-PAGE) followed by silver staining allowed the detection of different proteins, from which two major bands, corresponding to proteins of 56 and 64 kDa molecular weight, could be identified. Two other bands, corresponding to proteins of 52 and 48 kDa were also visualizable along with some other weaker bands of lower molecular weights. In order to identify these proteins, three antibodies directed against human proteins were tested on western blots of fingermarks residues: anti-keratin 1 and 10 (K1/10), anti-cathepsin-D (Cat.D) and anti-dermcidin (Derm.). The corresponding antigens are known to be present in the stratum corneum of desquamating stratified epithelium (K1/10, Cat.D) and/or in eccrine sweat (Cat.D, Derm.). The two major bands were identified as consistent with keratin 1 and 10. The pro-form and the active form of the cathepsin-D have also been identified from two other bands. Dermcidin could not be detected in the western blot. In addition, these antibodies have been tested on latent fingermarks left on polyvinylidene fluoride (PVDF) membrane, as well as on whitened and non-whitened paper. The detection of fingermarks was successful with all three antibodies.