18 resultados para control alternative
em Université de Lausanne, Switzerland
Resumo:
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Resumo:
BACKGROUND: An animal study was carried out to compare long-term patency rates of coronary anastomoses performed with the GraftConnector versus running suture technique. METHODS: 10 sheep, 45 to 55 kg, underwent off-pump coronary artery bypass grafting (right internal mammary artery to left anterior descending artery). In 5 animals, the anastomosis was performed with a GraftConnector and in 5 animals with 7-0 running suture. Intraoperative fluoroscopy and a fluoroscopic control at 6 months were performed. After 6 months, the animals were sacrificed and the anastomoses were examined histologically. RESULTS: All animals survived at 6 months with 100% anastomosis patency rates in both groups. In the GraftConnector group, the anastomosis diameter at 6 months fluoroscopy was 118% of native left anterior descending artery versus 97% of the control group. Luminal anastomotic width at histology was 1.7 +/- 0.2 mm in the device group versus 1.6 +/- 0.1 mm in the control group. Mean intimal hyperplasia thickness was 0.21 +/- 0.1 mm in the device group versus 0.01 mm in the control group. CONCLUSIONS: The GraftConnector provides a consistent and reproducible coronary artery anastomosis and reduces technical demand and manual dexterity in coronary operations. Long-term results demonstrate that off-pump coronary artery bypass grafting performed with the GraftConnector had the same patency rate and luminal width as those performed with running suture.
Resumo:
In Saccharomyces cerevisiae, efficient silencer function requires telomere proximity, i.e. compartments of the nucleoplasm enriched in silencing factors. Accordingly, silencers located far from telomeres function inefficiently. We show here that cells lacking yKu balance between two mitotically stable states of silencing competence. In one, a partial delocalization of telomeres and silencing factors throughout the nucleoplasm correlates with enhanced silencing at a non-telomeric locus, while in the other, telomeres retain their focal pattern of distribution and there is no repression at the non-telomeric locus, as observed in wild-type cells. The two states also differ in their level of residual telomeric silencing. These findings indicate the existence of a yKu-independent pathway of telomere clustering and Sir localization. Interestingly, this pathway appears to be under epigenetic control.
Resumo:
The Atripump is a motorless, volume displacement pump based on artificial muscle technology that could reproduce the pump function of normal atrium. It could help prevent blood clots due to blood stagnation and eventually avoid anticoagulation therapy in atrial fibrillation (AF). An animal study has been designed to assess mechanical effects of this pump on fibrillating atrium. The Atripump is a dome shaped silicone coated nitinol actuator. A pacemaker like control unit drives the actuator. In five adult sheep, the right atrium (RA) was exposed and dome sutured onto the epicardium. Atrial fibrillation was induced using rapid epicardial pacing (600 beats/min). Ejection fraction of the RA was obtained with intracardiac ultrasound in baseline, AF and Atripump assisted AF conditions. The dome's contraction rate was 60/min with power supply of 12V, 400 mA for 200 ms and ran for 2 hours in total. Mean temperature on the RA was 39+/-1.5 degrees C. Right atrium ejection fraction was 31% in baseline conditions, 5% and 20% in AF and assisted AF, respectively. In two animals a thrombus appeared in the right appendix and washed out once the pump was turned on. The Atripump washes blood out the RA acting as an anticoagulant device. Possible clinical implications in patients with chronic AF are prevention of embolism of cardiac origin and avoidance of hemorrhagic complication due to chronic anticoagulation.
Resumo:
Visual attention depends on bottom-up sensory activation and top-down attentional guidance. Although aging is known to affect sensory processing, its impact on the top-down control of attention remains a matter of debate. We investigated age-related modulations of brain oscillatory activity during visual attention using a variant of the attention network test (ANT) in 20 young and 28 elderly adults. We examined the EEG oscillatory responses to warning and target signals, and explored the correlates of temporal and spatial orienting as well as conflict resolution at target presentation. Time-frequency analysis was performed between 4 and 30Hz, and the relationship between behavioral and brain oscillatory responses was analyzed. Whereas temporal cueing and conflict had similar reaction time effects in both age groups, spatial cueing was more beneficial to older than younger subjects. In the absence of cue, posterior alpha activation was drastically reduced in older adults, pointing to an age-related decline in anticipatory attention. Following both cues and targets, older adults displayed pronounced motor-related activation in the low beta frequency range at the expense of attention-related posterior alpha activation prominent in younger adults. These findings support the recruitment of alternative motor-related circuits in the elderly, in line with the dedifferentiation hypothesis. Furthermore, older adults showed reduced midparietal alpha inhibition induced by temporal orienting as well as decreased posterior alpha activation associated with both spatial orienting and conflict resolution. Altogether, the results are consistent with an overall reduction of task-related alpha activity in the elderly, and provide functional evidence that younger and older adults engage distinct brain circuits at different oscillatory frequencies during attentional functions.
Resumo:
The human TPTE (Transmembrane Phosphatase with TEnsin homology) gene family encodes a PTEN-related tyrosine phosphatase with four potential transmembrane domains. Chromosomal mapping revealed multiple copies of the TPTE gene on chromosomes 13, 15, 21, 22 and Y. Human chromosomes 13 and 21 copies encode two functional proteins, TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) and TPTE, respectively, whereas only one copy of the gene exists in the mouse genome. In the present study, we show that TPTE and TPIP proteins are expressed in secondary spermatocytes and/or prespermatids. In addition, we report the existence of several novel alternatively spliced isoforms of these two proteins with variable number of transmembrane domains. The latter has no influence on the subcellular localization of these different peptides as shown by co-immunofluorescence experiments. Finally, we identify another expressed TPTE copy, mapping to human chromosome 22, whose transcription appears to be under the control of the LTR of human endogenous retrovirus RTVL-H3.
Resumo:
Human Ag-specific CD8(+) T lymphocytes are heterogeneous and include functionally distinct populations. In this study, we report that at least two distinct mechanisms control the expansion of circulating naive, memory, and effector CD8(+) T lymphocytes when exposed to mitogen or Ag stimulation. The first one leads to apoptosis and occurs shortly after in vitro stimulation. Susceptibility to cell death is prominent among primed T cell subsets, and it is inversely correlated with the size of the ex vivo Bcl-2(high) population within these subsets. Importantly, the Bcl-2(high) phenotype is associated to the proportion of responsive CD8(+) T cells, independently of their differentiation stage. The second one depends on the expression of newly synthesized cyclin-dependent kinase inhibitor p16(INK4a) that occurs in a significant fraction of T cells that had been actively cycling, leading to their cell cycle arrest upon stimulation. Strikingly, accumulation of p16(INK4a) protein preferentially occurs in naive as opposed to primed derived T lymphocytes and is not related to apoptosis. Significant levels of p16 are readily detectable in a small number of ex vivo CD8(+) T cells. Our observations reveal that activation-induced p16 expression represents an alternative process to apoptosis, limiting the proliferation potential of activated naive derived T lymphocytes.
Resumo:
[Table des matières] 1. Introduction to the control banding method : Nanomaterials and occupational risk assessment; Alternative method known as control banding; Scope and limits of control banding. - 2. Control banding process applied to manufactured nanomaterials: General points; Operating principle. - 3. Implementation of control banding: Gathering of information; Hazard bands; Exposure bands; Allocation of risk control bands. - 4. Bibliography: Publications; Books, reports, opinions, bulletins; Standards and references; Legislation and regulations; Websites. - Annexes
Resumo:
Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility.
Resumo:
OBJECTIVE: Atrial fibrillation is a very common heart arrhythmia, associated with a five-fold increase in the risk of embolic strokes. Treatment strategies encompass palliative drugs or surgical procedures all of which can restore sinus rhythm. Unfortunately, atria often fail to recover their mechanical function and patients therefore require lifelong anticoagulation therapy. A motorless volume displacing device (Atripump) based on artificial muscle technology, positioned on the external surface of atrium could avoid the need of oral anticoagulation and its haemorrhagic complications. An animal study was conducted in order to assess the haemodynamic effects that such a pump could provide. METHODS: Atripump is a dome-shape siliconecoated nitinol actuator sewn on the external surface of the atrium. It is driven by a pacemaker-like control unit. Five non-anticoagulated sheep were selected for this experiment. The right atrium was surgically exposed, the device sutured and connected. Haemodynamic parameters and intracardiac ultrasound (ICUS) data were recorded in each animal and under three conditions; baseline; atrial fibrillation (AF); atripump assisted AF (aaAF). RESULTS: In two animals, after 20 min of AF, small thrombi appeared in the right atrial appendix and were washed out once the pump was turned on. Assistance also enhanced atrial ejection fraction. 31% baseline; 5% during AF; 20% under aaAF. Right atrial systolic surfaces (cm2) were; 5.2 +/- 0.3 baseline; 6.2 +/- 0.1 AF; 5.4 +/- 0.3 aaAF. CONCLUSION: This compact and reliable pump seems to restore the atrial "kick" and prevents embolic events. It could avoid long-term anticoagulation therapy and open new hopes in the care of end-stage heart failure.
Resumo:
Invasive aspergillosis (IA) is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B) or cell wall (echinocandins) are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs) are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90), an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.
Resumo:
Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.
Resumo:
ABSTRACT: BACKGROUND: Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. METHODS: We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the formal distinction between the net benefit for the treated and for the untreated and define the concept of the "overall net benefit". Next, we revisit the important distinction between the concept of accuracy, as typically assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of decision curve analysis to be applied in the context of case-control studies. RESULTS: We show that the overall net benefit, which combines the net benefit for the treated and the untreated, is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision curve analysis, we illustrate the important difference between the accuracy and the utility of a model, demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation procedure. CONCLUSIONS: We present several interrelated extensions to decision curve analysis that will both facilitate its interpretation and broaden its potential area of application.
Resumo:
Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2l(hypo) ). Counterintuitive however, Bdtar2l(hypo) mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2l(hypo) root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis.