7 resultados para consistent
em Université de Lausanne, Switzerland
Resumo:
Genetic polymorphism can be maintained over time by negative frequency-dependent (FD) selection induced by Rock-paper-scissors (RPS) social systems. RPS games produce cyclic dynamics, and have been suggested to exist in lizards, insects, isopods, plants, and bacteria. Sexual selection is predicted to accentuate the survival of the future progeny during negative FD survival selection. More specifically, females are predicted to select mates that produce progeny genotypes that exhibit highest survival during survival selection imposed by adult males. However, no empirical evidence demonstrates the existence of FD sexual selection with respect to fitness payoffs of genetic polymorphisms. Here we tested this prediction using the common lizard Zootoca vivipara, a species with three male color morphs (orange, white, yellow) that exhibit morph frequency cycles. In a first step we tested the congruence of the morph frequency change with the predicted change in three independent populations, differing in male color morph frequency and state of the FD morph cycle. Thereafter we ran standardized sexual selection assays in which we excluded alternative mechanisms that potentially induce negative FD selection, and we quantified inter-sexual behavior. The patterns of sexual selection and the observed behavior were in line with context-dependent female mate choice and male behavior played a minor role. Moreover, the strength of the sexual selection was within the magnitude of selection required to produce the observed 3-4-year and 6-8 year morph frequency cycles at low and high altitudes, respectively. In summary, the study provides the first experimental evidence that underpins the crucial assumption of the RPS games suggested to exist in lizards, insects, isopods, and plants; namely, that sexual selection produces negative-FD selection. This indicates that sexual selection, in our study exert by females, might be a crucial driver of the maintenance of genetic polymorphisms.
Resumo:
Letrozole, an aromatase inhibitor, is ineffective in the presence of ovarian estrogen production. Two subpopulations of apparently postmenopausal women might derive reduced benefit from letrozole due to residual or returning ovarian activity: younger women (who have the potential for residual subclinical ovarian estrogen production), and those with chemotherapy-induced menopause who may experience return of ovarian function. In these situations tamoxifen may be preferable to an aromatase inhibitor. Among 4,922 patients allocated to the monotherapy arms (5 years of letrozole or tamoxifen) in the BIG 1-98 trial we identified two relevant subpopulations: patients with potential residual ovarian function, defined as having natural menopause, treated without adjuvant or neoadjuvant chemotherapy and age ≤ 55 years (n = 641); and those with chemotherapy-induced menopause (n = 105). Neither of the subpopulations examined showed treatment effects differing from the trial population as a whole (interaction P values are 0.23 and 0.62, respectively). Indeed, both among the 641 patients aged ≤ 55 years with natural menopause and no chemotherapy (HR 0.77 [0.51, 1.16]) and among the 105 patients with chemotherapy-induced menopause (HR 0.51 [0.19, 1.39]), the disease-free survival (DFS) point estimate favoring letrozole was marginally more beneficial than in the trial as a whole (HR 0.84 [0.74, 0.95]). Contrary to our initial concern, DFS results for young postmenopausal patients who did not receive chemotherapy and patients with chemotherapy-induced menopause parallel the letrozole benefit seen in the BIG 1-98 population as a whole. These data support the use of letrozole even in such patients.
Resumo:
PURPOSE: Health-related quality of life (HRQoL) is considered a representative outcome in the evaluation of chronic disease management initiatives emphasizing patient-centered care. We evaluated the association between receipt of processes-of-care (PoC) for diabetes and HRQoL. METHODS: This cross-sectional study used self-reported data from non-institutionalized adults with diabetes in a Swiss canton. Outcomes were the physical/mental composites of the short form health survey 12 (SF-12) physical composite score, mental composite score (PCS, MCS) and the Audit of Diabetes-Dependent Quality of Life (ADDQoL). Main exposure variables were receipt of six PoC for diabetes in the past 12 months, and the Patient Assessment of Chronic Illness Care (PACIC) score. We performed linear regressions to examine the association between PoC, PACIC and the three composites of HRQoL. RESULTS: Mean age of the 519 patients was 64.5 years (SD 11.3); 60% were male, 87% reported type 2 or undetermined diabetes and 48% had diabetes for over 10 years. Mean HRQoL scores were SF-12 PCS: 43.4 (SD 10.5), SF-12 MCS: 47.0 (SD 11.2) and ADDQoL: -1.6 (SD 1.6). In adjusted models including all six PoC simultaneously, receipt of influenza vaccine was associated with lower ADDQoL (β=-0.4, p≤0.01) and foot examination was negatively associated with SF-12 PCS (β=-1.8, p≤0.05). There was no association or trend towards a negative association when these PoC were reported as combined measures. PACIC score was associated only with the SF-12 MCS (β=1.6, p≤0.05). CONCLUSIONS: PoC for diabetes did not show a consistent association with HRQoL in a cross-sectional analysis. This may represent an effect lag time between time of process received and health-related quality of life. Further research is needed to study this complex phenomenon.
Resumo:
The main goal of CleanEx is to provide access to public gene expression data via unique gene names. A second objective is to represent heterogeneous expression data produced by different technologies in a way that facilitates joint analysis and cross-data set comparisons. A consistent and up-to-date gene nomenclature is achieved by associating each single experiment with a permanent target identifier consisting of a physical description of the targeted RNA population or the hybridization reagent used. These targets are then mapped at regular intervals to the growing and evolving catalogues of human genes and genes from model organisms. The completely automatic mapping procedure relies partly on external genome information resources such as UniGene and RefSeq. The central part of CleanEx is a weekly built gene index containing cross-references to all public expression data already incorporated into the system. In addition, the expression target database of CleanEx provides gene mapping and quality control information for various types of experimental resource, such as cDNA clones or Affymetrix probe sets. The web-based query interfaces offer access to individual entries via text string searches or quantitative expression criteria. CleanEx is accessible at: http://www.cleanex.isb-sib.ch/.
Resumo:
Microarray gene expression profiles of fresh clinical samples of chronic myeloid leukaemia in chronic phase, acute promyelocytic leukaemia and acute monocytic leukaemia were compared with profiles from cell lines representing the corresponding types of leukaemia (K562, NB4, HL60). In a hierarchical clustering analysis, all clinical samples clustered separately from the cell lines, regardless of leukaemic subtype. Gene ontology analysis showed that cell lines chiefly overexpressed genes related to macromolecular metabolism, whereas in clinical samples genes related to the immune response were abundantly expressed. These findings must be taken into consideration when conclusions from cell line-based studies are extrapolated to patients.
Resumo:
Résumé: L'automatisation du séquençage et de l'annotation des génomes, ainsi que l'application à large échelle de méthodes de mesure de l'expression génique, génèrent une quantité phénoménale de données pour des organismes modèles tels que l'homme ou la souris. Dans ce déluge de données, il devient très difficile d'obtenir des informations spécifiques à un organisme ou à un gène, et une telle recherche aboutit fréquemment à des réponses fragmentées, voir incomplètes. La création d'une base de données capable de gérer et d'intégrer aussi bien les données génomiques que les données transcriptomiques peut grandement améliorer la vitesse de recherche ainsi que la qualité des résultats obtenus, en permettant une comparaison directe de mesures d'expression des gènes provenant d'expériences réalisées grâce à des techniques différentes. L'objectif principal de ce projet, appelé CleanEx, est de fournir un accès direct aux données d'expression publiques par le biais de noms de gènes officiels, et de représenter des données d'expression produites selon des protocoles différents de manière à faciliter une analyse générale et une comparaison entre plusieurs jeux de données. Une mise à jour cohérente et régulière de la nomenclature des gènes est assurée en associant chaque expérience d'expression de gène à un identificateur permanent de la séquence-cible, donnant une description physique de la population d'ARN visée par l'expérience. Ces identificateurs sont ensuite associés à intervalles réguliers aux catalogues, en constante évolution, des gènes d'organismes modèles. Cette procédure automatique de traçage se fonde en partie sur des ressources externes d'information génomique, telles que UniGene et RefSeq. La partie centrale de CleanEx consiste en un index de gènes établi de manière hebdomadaire et qui contient les liens à toutes les données publiques d'expression déjà incorporées au système. En outre, la base de données des séquences-cible fournit un lien sur le gène correspondant ainsi qu'un contrôle de qualité de ce lien pour différents types de ressources expérimentales, telles que des clones ou des sondes Affymetrix. Le système de recherche en ligne de CleanEx offre un accès aux entrées individuelles ainsi qu'à des outils d'analyse croisée de jeux de donnnées. Ces outils se sont avérés très efficaces dans le cadre de la comparaison de l'expression de gènes, ainsi que, dans une certaine mesure, dans la détection d'une variation de cette expression liée au phénomène d'épissage alternatif. Les fichiers et les outils de CleanEx sont accessibles en ligne (http://www.cleanex.isb-sib.ch/). Abstract: The automatic genome sequencing and annotation, as well as the large-scale gene expression measurements methods, generate a massive amount of data for model organisms. Searching for genespecific or organism-specific information througout all the different databases has become a very difficult task, and often results in fragmented and unrelated answers. The generation of a database which will federate and integrate genomic and transcriptomic data together will greatly improve the search speed as well as the quality of the results by allowing a direct comparison of expression results obtained by different techniques. The main goal of this project, called the CleanEx database, is thus to provide access to public gene expression data via unique gene names and to represent heterogeneous expression data produced by different technologies in a way that facilitates joint analysis and crossdataset comparisons. A consistent and uptodate gene nomenclature is achieved by associating each single gene expression experiment with a permanent target identifier consisting of a physical description of the targeted RNA population or the hybridization reagent used. These targets are then mapped at regular intervals to the growing and evolving catalogues of genes from model organisms, such as human and mouse. The completely automatic mapping procedure relies partly on external genome information resources such as UniGene and RefSeq. The central part of CleanEx is a weekly built gene index containing crossreferences to all public expression data already incorporated into the system. In addition, the expression target database of CleanEx provides gene mapping and quality control information for various types of experimental resources, such as cDNA clones or Affymetrix probe sets. The Affymetrix mapping files are accessible as text files, for further use in external applications, and as individual entries, via the webbased interfaces . The CleanEx webbased query interfaces offer access to individual entries via text string searches or quantitative expression criteria, as well as crossdataset analysis tools, and crosschip gene comparison. These tools have proven to be very efficient in expression data comparison and even, to a certain extent, in detection of differentially expressed splice variants. The CleanEx flat files and tools are available online at: http://www.cleanex.isbsib. ch/.