3 resultados para consistency

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'objectif de cette étude est d'examiner la structure factorielle et la consistance interne de la TAS-20 sur un échantillon d'adolescents (n = 264), ainsi que de décrire la distribution des caractéristiques alexithymiques dans cet échantillon. La structure à trois facteurs de la TAS-20 a été confirmée par notre analyse factorielle confirmatoire. La consistance interne, mesurée à l'aide d'alpha de Cronbach, est acceptable pour le premier facteur (difficulté à identifier les sentiments (DIF)), bonne pour le second (difficulté à verbaliser les sentiments (DDF)), mais en revanche, faible pour le troisième facteur (pensées orientées vers l'extérieur (EOT)). Les résultats d'une Anova mettent en évidence une tendance linéaire indiquant que plus l'âge augmente plus le niveau d'alexithymie (score total TAS-20), la difficulté à identifier les sentiments et les pensées orientées vers l'extérieur diminuent. En ce qui concerne la prévalence de l'alexithymie, on remarque en effet que 38,5 % des adolescents de moins de 16 ans sont considérés comme alexithymiques, contre 30,1 % des 16-17 ans et 22 % des plus de 17 ans. Notre étude indique donc que la TAS-20 est un instrument adéquat pour évaluer l'alexithymie à l'adolescence, tout en suggérant quelques précautions étant donné l'aspect développemental de cette période.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency. MATERIALS AND METHODS: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images. For quantitative analysis, differences in composite width (CW, a measure of image similarity) and boundary shift integral (BSI, a measure of whole-brain atrophy) were calculated. RESULTS: Intra- and intersession comparisons of CW and BSI measures from scans with equal acceleration demonstrated excellent scan-rescan accuracy, even at the highest acceleration applied. Pairs-of-scans acquired with different accelerations exhibited poor scan-rescan consistency only when differences in the acceleration factor were maximized. A change in the coil hardware between compared scans was found to bias the BSI measure. CONCLUSION: The most important findings are that the accelerated acquisitions appear to be compatible with the assessment of high-quality quantitative information and that for highest scan-rescan accuracy in serial scans the acquisition protocol should be kept as consistent as possible over time. J. Magn. Reson. Imaging 2012;36:1234-1240. ©2012 Wiley Periodicals, Inc.