129 resultados para computational modelling
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
Resumo:
Abstract One of the most important issues in molecular biology is to understand regulatory mechanisms that control gene expression. Gene expression is often regulated by proteins, called transcription factors which bind to short (5 to 20 base pairs),degenerate segments of DNA. Experimental efforts towards understanding the sequence specificity of transcription factors is laborious and expensive, but can be substantially accelerated with the use of computational predictions. This thesis describes the use of algorithms and resources for transcriptionfactor binding site analysis in addressing quantitative modelling, where probabilitic models are built to represent binding properties of a transcription factor and can be used to find new functional binding sites in genomes. Initially, an open-access database(HTPSELEX) was created, holding high quality binding sequences for two eukaryotic families of transcription factors namely CTF/NF1 and LEFT/TCF. The binding sequences were elucidated using a recently described experimental procedure called HTP-SELEX, that allows generation of large number (> 1000) of binding sites using mass sequencing technology. For each HTP-SELEX experiments we also provide accurate primary experimental information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, and assembled clone sequences of binding sequences. The database also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols.The database is available at http://wwwisrec.isb-sib.ch/htpselex/ and and ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex. The Expectation-Maximisation(EM) algorithm is one the frequently used methods to estimate probabilistic models to represent the sequence specificity of transcription factors. We present computer simulations in order to estimate the precision of EM estimated models as a function of data set parameters(like length of initial sequences, number of initial sequences, percentage of nonbinding sequences). We observed a remarkable robustness of the EM algorithm with regard to length of training sequences and the degree of contamination. The HTPSELEX database and the benchmarked results of the EM algorithm formed part of the foundation for the subsequent project, where a statistical framework called hidden Markov model has been developed to represent sequence specificity of the transcription factors CTF/NF1 and LEF1/TCF using the HTP-SELEX experiment data. The hidden Markov model framework is capable of both predicting and classifying CTF/NF1 and LEF1/TCF binding sites. A covariance analysis of the binding sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism. We next tested the LEF1/TCF model by computing binding scores for a set of LEF1/TCF binding sequences for which relative affinities were determined experimentally using non-linear regression. The predicted and experimentally determined binding affinities were in good correlation.
Resumo:
PURPOSE OF REVIEW: Current computational neuroanatomy based on MRI focuses on morphological measures of the brain. We present recent methodological developments in quantitative MRI (qMRI) that provide standardized measures of the brain, which go beyond morphology. We show how biophysical modelling of qMRI data can provide quantitative histological measures of brain tissue, leading to the emerging field of in-vivo histology using MRI (hMRI). RECENT FINDINGS: qMRI has greatly improved the sensitivity and specificity of computational neuroanatomy studies. qMRI metrics can also be used as direct indicators of the mechanisms driving observed morphological findings. For hMRI, biophysical models of the MRI signal are being developed to directly access histological information such as cortical myelination, axonal diameters or axonal g-ratio in white matter. Emerging results indicate promising prospects for the combined study of brain microstructure and function. SUMMARY: Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both research and clinics. Both approaches improve comparability across sites and time points, facilitating multicentre/longitudinal studies and standardized diagnostics. hMRI is expected to shed new light on the relationship between brain microstructure, function and behaviour, both in health and disease, and become an indispensable addition to computational neuroanatomy.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.
Resumo:
The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.
Resumo:
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Resumo:
Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.
Resumo:
Résumé: L'évaluation de l'exposition aux nuisances professionnelles représente une étape importante dans l'analyse de poste de travail. Les mesures directes sont rarement utilisées sur les lieux même du travail et l'exposition est souvent estimée sur base de jugements d'experts. Il y a donc un besoin important de développer des outils simples et transparents, qui puissent aider les spécialistes en hygiène industrielle dans leur prise de décision quant aux niveaux d'exposition. L'objectif de cette recherche est de développer et d'améliorer les outils de modélisation destinés à prévoir l'exposition. Dans un premier temps, une enquête a été entreprise en Suisse parmi les hygiénistes du travail afin d'identifier les besoins (types des résultats, de modèles et de paramètres observables potentiels). Il a été constaté que les modèles d'exposition ne sont guère employés dans la pratique en Suisse, l'exposition étant principalement estimée sur la base de l'expérience de l'expert. De plus, l'émissions de polluants ainsi que leur dispersion autour de la source ont été considérés comme des paramètres fondamentaux. Pour tester la flexibilité et la précision des modèles d'exposition classiques, des expériences de modélisations ont été effectuées dans des situations concrètes. En particulier, des modèles prédictifs ont été utilisés pour évaluer l'exposition professionnelle au monoxyde de carbone et la comparer aux niveaux d'exposition répertoriés dans la littérature pour des situations similaires. De même, l'exposition aux sprays imperméabilisants a été appréciée dans le contexte d'une étude épidémiologique sur une cohorte suisse. Dans ce cas, certains expériences ont été entreprises pour caractériser le taux de d'émission des sprays imperméabilisants. Ensuite un modèle classique à deux-zone a été employé pour évaluer la dispersion d'aérosol dans le champ proche et lointain pendant l'activité de sprayage. D'autres expériences ont également été effectuées pour acquérir une meilleure compréhension des processus d'émission et de dispersion d'un traceur, en se concentrant sur la caractérisation de l'exposition du champ proche. Un design expérimental a été développé pour effectuer des mesures simultanées dans plusieurs points d'une cabine d'exposition, par des instruments à lecture directe. Il a été constaté que d'un point de vue statistique, la théorie basée sur les compartiments est sensée, bien que l'attribution à un compartiment donné ne pourrait pas se faire sur la base des simples considérations géométriques. Dans une étape suivante, des données expérimentales ont été collectées sur la base des observations faites dans environ 100 lieux de travail différents: des informations sur les déterminants observés ont été associées aux mesures d'exposition des informations sur les déterminants observés ont été associé. Ces différentes données ont été employées pour améliorer le modèle d'exposition à deux zones. Un outil a donc été développé pour inclure des déterminants spécifiques dans le choix du compartiment, renforçant ainsi la fiabilité des prévisions. Toutes ces investigations ont servi à améliorer notre compréhension des outils des modélisations ainsi que leurs limitations. L'intégration de déterminants mieux adaptés aux besoins des experts devrait les inciter à employer cet outil dans leur pratique. D'ailleurs, en augmentant la qualité des outils des modélisations, cette recherche permettra non seulement d'encourager leur utilisation systématique, mais elle pourra également améliorer l'évaluation de l'exposition basée sur les jugements d'experts et, par conséquent, la protection de la santé des travailleurs. Abstract Occupational exposure assessment is an important stage in the management of chemical exposures. Few direct measurements are carried out in workplaces, and exposures are often estimated based on expert judgements. There is therefore a major requirement for simple transparent tools to help occupational health specialists to define exposure levels. The aim of the present research is to develop and improve modelling tools in order to predict exposure levels. In a first step a survey was made among professionals to define their expectations about modelling tools (what types of results, models and potential observable parameters). It was found that models are rarely used in Switzerland and that exposures are mainly estimated from past experiences of the expert. Moreover chemical emissions and their dispersion near the source have also been considered as key parameters. Experimental and modelling studies were also performed in some specific cases in order to test the flexibility and drawbacks of existing tools. In particular, models were applied to assess professional exposure to CO for different situations and compared with the exposure levels found in the literature for similar situations. Further, exposure to waterproofing sprays was studied as part of an epidemiological study on a Swiss cohort. In this case, some laboratory investigation have been undertaken to characterize the waterproofing overspray emission rate. A classical two-zone model was used to assess the aerosol dispersion in the near and far field during spraying. Experiments were also carried out to better understand the processes of emission and dispersion for tracer compounds, focusing on the characterization of near field exposure. An experimental set-up has been developed to perform simultaneous measurements through direct reading instruments in several points. It was mainly found that from a statistical point of view, the compartmental theory makes sense but the attribution to a given compartment could ñó~be done by simple geometric consideration. In a further step the experimental data were completed by observations made in about 100 different workplaces, including exposure measurements and observation of predefined determinants. The various data obtained have been used to improve an existing twocompartment exposure model. A tool was developed to include specific determinants in the choice of the compartment, thus largely improving the reliability of the predictions. All these investigations helped improving our understanding of modelling tools and identify their limitations. The integration of more accessible determinants, which are in accordance with experts needs, may indeed enhance model application for field practice. Moreover, while increasing the quality of modelling tool, this research will not only encourage their systematic use, but might also improve the conditions in which the expert judgments take place, and therefore the workers `health protection.