206 resultados para component classification

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650 °C during 15 s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces replicates in the same cluster than the replicates of their corresponding tire. Blind tests on traces were performed and were correctly assigned to their tire source. These results support the hypothesis that the tested tires, of different manufacturers and models, can be discriminated by a statistical comparison of their chemical profiles. The traces were found to be not differentiable from their source but differentiable from all the other tires present in the subset. The results are promising and will be extended on a larger sample set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To report the diffusion-weighted MRI findings in alveolar echinococcosis (AE) of the liver and evaluate the potential role of apparent diffusion coefficients (ADCs) in the characterisation of lesions. MATERIALS AND METHODS: We retrospectively included 22 patients with 63 AE liver lesions (≥1cm), examined with 3-T liver MRI, including a free-breathing diffusion-weighted single-shot echo-planar imaging sequence (b-values=50, 300 and 600s/mm(2)). Two radiologists jointly assessed the following lesion features: size, location, presence of cystic and/or solid components (according to Kodama's classification system), relative contrast enhancement, and calcifications (on CT). The ADCtotal, ADCmin and ADCmax were measured in each lesion and the surrounding liver parenchyma. RESULTS: Three type 1, 19 type 2, 17 type 3, three type 4 and 21 type 5 lesions were identified. The mean (±SD) ADCtotal, ADCmin and ADCmax for all lesions were 1.73±0.50, 0.76±0.38 and 2.63±0.76×10(-3)mm(2)/s, respectively. The mean ADCtotal for type 1, type 2, type 3, type 4 and type 5 lesions were 1.97±1.01, 1.76±0.53, 1.73±0.41, 1.15±0.42 and 1.76±0.44×10(-3)mm(2)/s, respectively. No significant differences were found between the five lesion types, except for type 4 (p=0.0363). There was a significant correlation between the presence of a solid component and low ADCmin (r=0.39, p=0.0016), whereas an inverse correlation was found between the relative contrast enhancement and ADCtotal (r=-0.34, p=0.0072). CONCLUSION: The ADCs of AE lesions are relatively low compared to other cystic liver lesions, which may help in the differential diagnosis. Although ADCs are of little use to distinguish between the five lesion types, their low value reflects the underlying solid component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur(R) N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sample. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X - 0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60-mu-g/m3 (3 U.K. TLVs) for total -N = C = O groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the impact of meeting specific classification criteria [modified New York (mNY), European Spondyloarthropathy Study Group (ESSG), and Assessment of SpondyloArthritis international Society (ASAS) criteria] on anti-tumor necrosis factor (anti-TNF) drug retention, and to determine predictive factors of better drug survival. All patients fulfilling the ESSG criteria for axial spondyloarthritis (SpA) with available data on the axial ASAS and mNY criteria, and who had received at least one anti-TNF treatment were retrospectively retrieved in a single academic institution in Switzerland. Drug retention was computed using survival analysis (Kaplan-Meier), adjusted for potential confounders. Of the 137 patients classified as having axial SpA using the ESSG criteria, 112 also met the ASAS axial SpA criteria, and 77 fulfilled the mNY criteria. Drug retention rates at 12 and 24 months for the first biologic therapy were not significantly different between the diagnostic groups. Only the small ASAS non-classified axial SpA group (25 patients) showed a nonsignificant trend toward shorter drug survival. Elevated CRP level, but not the presence of bone marrow edema on magnetic resonance imaging (MRI) scans, was associated with significantly better drug retention (OR 7.9, ICR 4-14). In this cohort, anti-TNF drug survival was independent of the classification criteria. Elevated CRP level, but not positive MRI, was associated with better drug retention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm−1 and 2730-3600 cm−1, provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.