5 resultados para cloud computing datacenter performance QoS

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of powerful new technologies, the existence of large quantities of data, and increasing demands for the extraction of added value from these technologies and data have created a number of significant challenges for those charged with both corporate and information technology management. The possibilities are great, the expectations high, and the risks significant. Organisations seeking to employ cloud technologies and exploit the value of the data to which they have access, be this in the form of "Big Data" available from different external sources or data held within the organisation, in structured or unstructured formats, need to understand the risks involved in such activities. Data owners have responsibilities towards the subjects of the data and must also, frequently, demonstrate that they are in compliance with current standards, laws and regulations. This thesis sets out to explore the nature of the technologies that organisations might utilise, identify the most pertinent constraints and risks, and propose a framework for the management of data from discovery to external hosting that will allow the most significant risks to be managed through the definition, implementation, and performance of appropriate internal control activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing and its three facets (Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)) are terms that denote new developments in the software industry. In particular, PaaS solutions, also referred to as cloud platforms, are changing the way software is being produced, distributed, consumed, and priced. Software vendors have started considering cloud platforms as a strategic option but are battling to redefine their offerings to embrace PaaS. In contrast to SaaS and IaaS, PaaS allows for value co-creation with partners to develop complementary components and applications. It thus requires multisided business models that bring together two or more distinct customer segments. Understanding how to design PaaS business models to establish a flourishing ecosystem is crucial for software vendors. This doctoral thesis aims to address this issue in three interrelated research parts. First, based on case study research, the thesis provides a deeper understanding of current PaaS business models and their evolution. Second, it analyses and simulates consumers' preferences regarding PaaS business models, using a conjoint approach to find out what determines the choice of cloud platforms. Finally, building on the previous research outcomes, the third part introduces a design theory for the emerging class of PaaS business models, which is grounded on an extensive action design research study with a large European software vendor. Understanding PaaS business models from a market as well as a consumer perspective will, together with the design theory, inform and guide decision makers in their business model innovation plans. It also closes gaps in the research related to PaaS business model design and more generally related to platform business models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously. Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism ( SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the last 2 decades, supertree reconstruction has been an active field of research and has seen the development of a large number of major algorithms. Because of the growing popularity of the supertree methods, it has become necessary to evaluate the performance of these algorithms to determine which are the best options (especially with regard to the supermatrix approach that is widely used). In this study, seven of the most commonly used supertree methods are investigated by using a large empirical data set (in terms of number of taxa and molecular markers) from the worldwide flowering plant family Sapindaceae. Supertree methods were evaluated using several criteria: similarity of the supertrees with the input trees, similarity between the supertrees and the total evidence tree, level of resolution of the supertree and computational time required by the algorithm. Additional analyses were also conducted on a reduced data set to test if the performance levels were affected by the heuristic searches rather than the algorithms themselves. Based on our results, two main groups of supertree methods were identified: on one hand, the matrix representation with parsimony (MRP), MinFlip, and MinCut methods performed well according to our criteria, whereas the average consensus, split fit, and most similar supertree methods showed a poorer performance or at least did not behave the same way as the total evidence tree. Results for the super distance matrix, that is, the most recent approach tested here, were promising with at least one derived method performing as well as MRP, MinFlip, and MinCut. The output of each method was only slightly improved when applied to the reduced data set, suggesting a correct behavior of the heuristic searches and a relatively low sensitivity of the algorithms to data set sizes and missing data. Results also showed that the MRP analyses could reach a high level of quality even when using a simple heuristic search strategy, with the exception of MRP with Purvis coding scheme and reversible parsimony. The future of supertrees lies in the implementation of a standardized heuristic search for all methods and the increase in computing power to handle large data sets. The latter would prove to be particularly useful for promising approaches such as the maximum quartet fit method that yet requires substantial computing power.