2 resultados para closing
em Université de Lausanne, Switzerland
Resumo:
Divergent and convergent margins actualistic models are reviewed and applied to the history of the western Alps. Tethyan rifting history and geometry are analyzed: the northern European margin is considered as an upper plate whereas the southern Apulian margin is a lower plate; the Breche basin is regarded as the former break-away trough; the internal Brianconnais domain represents the northern rift shoulder whilst the more external domains are regarded as the infill of a complex rim basin locally affected by important extension (Valaisan and Vocontain trough). The Schistes lustres and ophiolites of the Tsate nappe are compared to an accretionary prism: the imbrication of this nappe elements is regarded as a direct consequence of the accretionary phenomena already active in early Cretaceous; the Gets/Simme complex could orginate from a more internal part of the accretionary prism. Some eclogitic basements represent the former Apulian margin substratum (Sesia) others (Mont-Rose) are interpreted as the former edge of the European margin. The history of the closing Tethyan domain is analyzed and the remaining problems concerning the cinematics, the presence/absence of a volcanic arc and the eoalpine metamorphism are discussed.
Resumo:
Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.