2 resultados para cleanup
em Université de Lausanne, Switzerland
Resumo:
RATIONALE: AICAR (5-aminoimidazole-4-carboxamide 1β-D-ribofuranoside) is prohibited in sport according to rules established by the World Anti-Doping Agency. Doping control laboratories identify samples where AICAR abuse is suspected by measuring its urinary concentration and comparing the observed level with naturally occurring concentrations. As the inter-individual variance of urinary AICAR concentrations is large, this approach requires a complementary method to unambiguously prove the exogenous origin of AICAR. Therefore, a method for the determination of carbon isotope ratios (CIRs) of urinary AICAR has been developed and validated. METHODS: Concentrated urine samples were fractionated by means of liquid chromatography for analyte cleanup. Derivatization of AICAR yielding the trimethylsilylated analog was necessary to enable CIR determinations by gas chromatography/combustion/isotope ratio mass spectrometry. The method was tested for its repeatability and stability over time and a linear mixing model was applied to test for possible isotopic discrimination. A reference population of n = 63 males and females was investigated to calculate appropriate reference limits to differentiate endogenous from exogenous urinary AICAR. These limits were tested by an AICAR elimination study. RESULTS: The developed method fulfills all the requirements for adequate sports drug testing and was found to be fit for purpose. The investigated reference population showed a larger variability in the CIR of AICAR than of the endogenous steroids. Nevertheless, the calculated thresholds for differences between AICAR and endogenous steroids can be applied straightforwardly to evaluate suspicious doping control samples with the same statistical confidence as established e.g. for testosterone misuse. These thresholds enabled the detection of a single oral AICAR administration for more than 40 h. CONCLUSIONS: Determination of thee CIRs is the method of choice to distinguish between an endogenous and an exogenous source of urinary AICAR. The developed method will enable investigations into doping control samples with elevated urinary concentrations of AICAR and clearly differentiate between naturally produced/elevated and illicitly administered AICAR.
Resumo:
Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater.