2 resultados para chronic stress
em Université de Lausanne, Switzerland
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
Allostatic load (AL) is a marker of physiological dysregulation which reflects exposure to chronic stress. High AL has been related to poorer health outcomes including mortality. We examine here the association of socioeconomic and lifestyle factors with AL. Additionally, we investigate the extent to which AL is genetically determined. We included 803 participants (52% women, mean age 48±16years) from a population and family-based Swiss study. We computed an AL index aggregating 14 markers from cardiovascular, metabolic, lipidic, oxidative, hypothalamus-pituitary-adrenal and inflammatory homeostatic axes. Education and occupational position were used as indicators of socioeconomic status. Marital status, stress, alcohol intake, smoking, dietary patterns and physical activity were considered as lifestyle factors. Heritability of AL was estimated by maximum likelihood. Women with a low occupational position had higher AL (low vs. high OR=3.99, 95%CI [1.22;13.05]), while the opposite was observed for men (middle vs. high OR=0.48, 95%CI [0.23;0.99]). Education tended to be inversely associated with AL in both sexes(low vs. high OR=3.54, 95%CI [1.69;7.4]/OR=1.59, 95%CI [0.88;2.90] in women/men). Heavy drinking men as well as women abstaining from alcohol had higher AL than moderate drinkers. Physical activity was protective against AL while high salt intake was related to increased AL risk. The heritability of AL was estimated to be 29.5% ±7.9%. Our results suggest that generalized physiological dysregulation, as measured by AL, is determined by both environmental and genetic factors. The genetic contribution to AL remains modest when compared to the environmental component, which explains approximately 70% of the phenotypic variance.