18 resultados para chromatic dispersion
em Université de Lausanne, Switzerland
Resumo:
Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Modern sonic logging tools designed for shallow environmental and engineering applications allow for P-wave phase velocity measurements over a wide frequency band. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and source frequencies ranging from approximately 1 to 30 kHz, the observable poro-elastic P-wave velocity dispersion is sufficiently pronounced to allow for reliable first-order estimations of the underlying permeability structure. These predictions have been tested on and verified for a surficial alluvial aquifer. Our results indicate that, even without any further calibration, the thus obtained permeability estimates as well as their variabilities within the pertinent lithological units are remarkably close to those expected based on the corresponding granulometric characteristics.
Resumo:
Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.
Resumo:
OBJECTIVE: To weight the rod-, cone-, and melanopsin-mediated activation of the retinal ganglion cells, which drive the pupil light reflex by varying the light stimulus wavelength, intensity, and duration. DESIGN: Experimental study. PARTICIPANTS: Forty-three subjects with normal eyes and 3 patients with neuroretinal visual loss. METHODS: A novel stimulus paradigm was developed using either a long wavelength (red) or short wavelength (blue) light given as a continuous Ganzfeld stimulus with stepwise increases over a 2 log-unit range. The pupillary movement before, during, and after the light stimulus was recorded in real time with an infrared illuminated video camera. MAIN OUTCOME MEASURES: The percent pupil contraction of the transient and sustained pupil response to a low- (1 cd/m(2)), medium- (10 cd/m(2)), and high-intensity (100 cd/m(2)) red- and blue-light stimulus was calculated for 1 eye of each subject. From the 43 normal eyes, median and 25th, 75th, 5th, and 95th percentile values were obtained for each stimulus condition. RESULTS: In normal eyes at lower intensities, blue light evoked much greater pupil responses compared with red light when matched for photopic luminance. The transient pupil contraction was generally greater than the sustained contraction, and this disparity was greatest at the lowest light intensity and least apparent with bright (100 cd/m(2)) blue light. A patient with primarily rod dysfunction (nonrecordable scotopic electroretinogram) showed significantly reduced pupil responses to blue light at lower intensities. A patient with achromatopsia and an almost normal visual field showed selective reduction of the pupil response to red-light stimulation. A patient with ganglion cell dysfunction owing to anterior ischemic optic neuropathy demonstrated global loss of pupil responses to red and blue light in the affected eye. CONCLUSIONS: Pupil responses that differ as a function of light intensity and wavelength support the hypothesis that selected stimulus conditions can produce pupil responses that reflect phototransduction primarily mediated by rods, cones, or melanopsin. Use of chromatic pupil responses may be a novel way to diagnose and monitor diseases affecting either the outer or inner retina.
Resumo:
Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.
Resumo:
OBJECTIVE:: To evaluate the chromatic pupillary response as a means of assessing outer and inner retinal function in patients with retinitis pigmentosa (RP). DESIGN:: Evaluation of diagnostic technology. PARTICIPANTS:: Thirty-two patients with RP and visual loss and 43 normal subjects. METHODS:: Patients were tested with a chromatic pupillometer using red and blue lights (1, 10, and 100 cd/m(2)), and their pupil responses were compared with those from 43 normal subjects (reported previously). Visual field and electroretinography (ERG) results were examined and compared with the pupil responses. MAIN OUTCOME MEASURES:: The percent pupil contraction of the transient response to a low-intensity (1 cd/m(2)) blue light and high-intensity (100 cd/m(2)) red light and the sustained response to a high-intensity blue light was calculated for 1 eye of each subject. RESULTS:: The pupil responses to red and blue light at all intensities were recordable in all patients except 1, whose pupil responded only to bright blue light. There was a significant difference of the pupil response between patients with RP and normal subjects in testing conditions that emphasized rod (1 cd/m(2) blue light) or cone (100 cd/m(2) red light) contribution (P<0.001). Patients with a non-recordable scotopic ERG showed significantly reduced pupil responses (P<0.001) to low-intensity blue light (1 cd/m(2)). Patients with a non-recordable or abnormal photopic ERG showed significantly reduced pupil responses (P<0.05) to high-intensity red light (100 cd/m(2)). Patients with a nonrecordable ERG had the most visual field loss and reduced pupil responses. Unexpectedly, patients with RP showed a slower re-dilation of the pupil after termination of bright blue light compared with red light, a pattern not observed in normal subjects. CONCLUSIONS:: Pupil responses to red and blue light stimuli weighted to favor cone or rod input are significantly reduced in patients with RP but are still recordable in patients having a non-recordable ERG. In addition, outer photoreceptor disease appears to unmask a post-illumination pupillary constriction to bright blue light, most likely mediated by intrinsic activation of melanopsin ganglion cells. Chromatic pupillometry provides a novel, noninvasive method for following retinal functional status, particularly in patients with severe RP and non-recordable ERG. FINANCIAL DISCLOSURE(S):: Proprietary or commercial disclosure may be found after the references.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Comprendre la dispersion des espèces dans l'espace et dans le temps : un défi pour les biogéographes
Resumo:
De tout temps, l'homme s'est interrogé sur les facteurs qui régissent la distribution des espèces. Comment se dispersent-elles? Comment occupent-elles un milieu? Pourquoi certaines caractéristiques biologiques d'une même entité spécifique varient-elles en différents points de l'espace? Pour répondre à ces questions, il faut faire appel à de nombreuses disciplines scientifiques, telles que l'écologie, la géologie, la climatologie ou la paléontologie. Comprendre la distribution spatiale de la vie, quel que soit le niveau taxonomique, tel est l'objectif de la biogéographie
Resumo:
Abstract Carotenoids typically need reflective background components to shine. Such components, iridophores, leucophores, and keratin- and collagen-derived structures, are generally assumed to show no or little environmental variability. Here, we investigate the origin of environmentally induced variation in the carotenoid-based ventral coloration of male common lizards (Lacerta vivipara) by investigating the effects of dietary carotenoids and corticosterone on both carotenoid- and background-related reflectance. We observed a general negative chromatic change that was prevented by β-carotene supplementation. However, chromatic changes did not result from changes in carotenoid-related reflectance or skin carotenoid content but from changes in background-related reflectance that may have been mediated by vitamin A. An in vitro experiment showed that the encountered chromatic changes most likely resulted from changes in iridophore reflectance. Our findings demonstrate that chromatic variation in carotenoid-based ornaments may not exclusively reflect differences in integumentary carotenoid content and, hence, in qualities linked to carotenoid deposition (e.g., foraging ability, immune response, or antioxidant capacity). Moreover, skin carotenoid content and carotenoid-related reflectance were related to male color polymorphism, suggesting that carotenoid-based coloration of male common lizards is a multicomponent signal, with iridophores reflecting environmental conditions and carotenoids reflecting genetically based color morphs.
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.