417 resultados para cerebral imaging

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

SUMMARY:: The EEG patterns seen with encephalopathies can be correlated to cerebral imaging findings including head computerized tomography and MRI. Background slowing without slow-wave intrusion is seen with acute and chronic cortical impairments that spare subcortical white matter. Subcortical/white matter structural abnormalities or hydrocephalus may produce projected slow-wave activity, while clinical entities involving both cortical and subcortical regions (diffuse cerebral abnormalities) engender both background slowing and slow-wave activity. Triphasic waves are seen with hepatic and renal insufficiency or medication toxicities (e.g., lithium, baclofen) in the absence of a significant cerebral imaging abnormality, Conversely, subcortical/white matter abnormalities may facilitate the appearance of triphasic waves without significant hepatic, renal, or toxic comorbidities. More specific syndromes, such as Jakob-Creutzfeldt disease, autoimmune limbic encephalitis, autoimmune corticosteroid-responsive encephalopathy with thyroid autoimmunity, sepsis-associated encephalopathy, and acute disseminated encephalomyelitis, have imaging/EEG changes that are variable but which may include slowing and epileptiform activity. This overview highlighting EEG-imaging correlations may help the treating physician in the diagnosis, and hence the appropriate treatment, of patients with encephalopathy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: When a child is seen in a clinic with a headache, stroke is certainly not the first on the list of differential diagnoses. In western countries, stroke is typically associated with adults and the elderly. Although rare, haemorrhagic strokes are not exceptional in the paediatric population, as their incidence is around 1/100 000/year. Prompt diagnosis is essential, since delayed treatment may lead to disastrous prognosis in these children. MATERIALS AND METHODS: This is a retrospective review of paediatric cases with spontaneous cerebral haemorrhage that presented in two university hospitals in the last ten years. The experience of these primary and tertiary referral centres comprises 22 consecutive cases that are analysed according to aetiology, presenting symptoms, treatment and outcome. RESULTS: 77% of the children diagnosed with haemorrhagic stroke presented with headaches. 41% of them had a sudden onset, while 9% developed headaches over a period of hours to weeks. While 9% presented only with headaches, the majority had either subtle (diplopia, balance problems) or obvious (focal deficits, unilateral weakness and decreased level of consciousness) concomitant neurological signs. 55% had an arteriovenous malformation (AVM), 18% had an aneurysm and 14% had a cavernous malformation. In 14% the aetiology could not be determined. The majority of haemorrhages (82%) were supratentorial, while 18% bled into the posterior fossa. All children underwent an emergency cerebral CT scan followed by specific investigations. The treatment was dependent on the aetiology as well as the mass effect of the haematoma. In 23% an emergent evacuation of the haematoma was performed. Two children (9%) died, and 75% had a favourable clinical outcome. CONCLUSION: Headaches in children are a common problem, and a small minority may reveal an intracranial haemorrhage with poor prognosis if not treated promptly. Although characterisation of headaches is more difficult in a paediatric population, sudden, unusual or intense headaches should lead to imaging work-up. Any neurological finding, even one as subtle as hemianopsia or dysmetria, should alarm the physician and should be followed by emergency imaging investigation. If the cerebral CT reveals a haemorrhage, the child should be referred immediately to a neurosurgical referral centre without further investigation. The outcome is grim for children presenting in coma with fixed, dilated pupils. The long-term result overall for children after spontaneous intracranial haemorrhage is not dismal and depends critically on specialised management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional architecture of the occipital cortex is being studied with increasing detail. Functional and structural MR based imaging are altering views about the organisation of the human visual system. Recent advances have ranged from comparative studies with non-human primates to predictive scanning. The latter multivariate technique describes with sub-voxel resolution patterns of activity that are characteristic of specific visual experiences. One can deduce what a subject experienced visually from the pattern of cortical activity recorded. The challenge for the future is to understand visual functions in terms of cerebral computations at a mesoscopic level of description and to relate this information to electrophysiology. The principal medical application of this new knowledge has focused to a large extent on plasticity and the capacity for functional reorganisation. Crossmodality visual-sensory interactions and cross-correlations between visual and other cerebral areas in the resting state are areas of considerable current interest. The lecture will review findings over the last two decades and reflect on possible roles for imaging studies in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As future treatments increasingly target the protein chemistry underlying the different dementias, itbecomes crucially important to distinguish between the dementias during life. Neither specific proteinnor genetic markers are as yet available in clinical practice. However, neuroimaging is an obviouscandidate technique that may yield enhanced diagnostic accuracy when applied to thedementias. The physiopathology and anatomopathology is complex in dementia with Lewy bodies(DLB). Besides the relative sparing of medial temporal lobe structures in DLB in comparison toAlzheimer's disease, no clear signature pattern of cerebral atrophy associated with DLB has beenestablished so far. Among others, one reason may be the difficulty in visualizing the small brainnuclei that are differentially involved among the dementias. While we think that structural magneticresonance imaging neuroimaging should be part of the diagnostic workup of most dementia syndromesdue to its usefulness in the differential diagnosis, its contribution to a positive diagnosis ofDLB is as yet limited. The development of different neuroimaging techniques may help distinguishreliably DLB from other neurodegenerative disorders. However, in order to become accepted as partof standard care, these techniques must still prove their effectiveness under routine conditions suchas those encountered by the general practitioner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The Fragile X - associated Tremor Ataxia Syndrome (FXTAS) is a recently described, and under-diagnosed, late onset (≈ 60y) neurodegenerative disorder affecting male carriers of a premutation in the Fragile X Mental Retardation 1 (FMR1) gene. The premutation is an CGG (Cytosine-Guanine-Guanine) expansion (55 to 200 CGG repeats) in the proximal region of the FMR1 gene. Patients with FXTAS primarily present with cerebellar ataxia and intention tremor. Neuroradiological features of FXTAS include prominent white matter disease in the periventricular, subcortical, middle cerebellar peduncles and deep white matter of the cerebellum on T2-weighted or FLAIR MR imaging (Jacquemmont 2007, Loesch 2007, Brunberg 2002, Cohen 2006). We hypothesize that a significant white matter alteration is present in younger individuals many years prior to clinical symptoms and/or the presence of visible lesions on conventional MR sequences and might be detectable by magnetization transfer (MT) imaging. Methods: Eleven asymptomatic premutation carriers (mean age = 55 years) and seven intra-familial controls participated to the study. A standardized neurological examination was performed on all participants and a neuropsychological evaluation was carried out before MR scanning performed on a 3T Siemens Trio. The protocol included a sagittal T1-weighted 3D gradient-echo sequence (MPRAGE, 160 slices, 1 mm^3 isotropic voxels) and a gradient-echo MTI (FA 30, TE 15, matrix size 256*256, pixel size 1*1 mm, 36 slices (thickness 2mm), MT pulse duration 7.68 ms, FA 500, frequency offset 1.5 kHz). MTI was performed by acquiring consecutively two set of images; first with and then without the MT saturation pulse. MT images were coregistered to the T1 acquisition. The MTR for every intracranial voxel was calculated as follows: MTR = (M0 - MS)/M0*100%, creating a MTR map for each subject. As first analysis, the whole white matter (WM) was used to mask the MTR image in order to create an histogram of the MTR distribution in the whole tissue class over the two groups examined. Then, for each subject, we performed a segmentation and parcellation of the brain by means of Freesurfer software, starting from the high resolution T1-weighted anatomical acquisition. Cortical parcellations was used to assign a label to the underlying white matter by the construction of a Voronoi diagram in the WM voxels of the MR volume based on distance to the nearest cortical parcellation label. This procedure allowed us to subdivide the cerebral WM in 78 ROIs according to the cortical parcellation (see example in Fig 1). The cerebellum, by the same procedure, was subdivided in 5 ROIs (2 per each hemisphere and one corresponding to the brainstem). For each subject, we calculated the mean value of MTR within each ROI and averaged over controls and patients. Significant differences between the two groups were tested using a two sample T-test (p<0.01). Results: Neurological examination showed that no patient met the clinical criteria of Fragile X Tremor and Ataxia Syndrome yet. Nonetheless, premutation carriers showed some subtle neurological signs of the disorder. In fact, premutation carriers showed a significant increase of tremor (CRST, T-test p=0.007) and increase of ataxia (ICARS, p=0.004) when compared to controls. The neuropsychological evaluation was normal in both groups. To obtain general characterizations of myelination for each subject and premutation carriers, we first computed the distribution of MTR values across the total white matter volume and averaged for each group. We tested the equality of the two distributions with the non parametric Kolmogorov-Smirnov test and we rejected the null-hypothesis at a p=0.03 (fig. 2). As expected, when comparing the asymptomatic permutation carriers with control subjects, the peak value and peak position of the MTR values within the whole WM were decreased and the width of the distribution curve was increased (p<0.01). These three changes point to an alteration of the global myelin status of the premutation carriers. Subsequently, to analyze the regional myelination and white matter integrity of the same group, we performed a ROI analysis of MTR data. The ROI-based analysis showed a decrease of mean MTR value in premutation carriers compared to controls in bilateral orbito-frontal and inferior frontal WM, entorhinal and cingulum regions and cerebellum (Fig 3). The detection of these differences in these regions failed with other conventional MR techniques. Conclusions: These preliminary data confirm that in premutation carriers, there are indeed alterations in "normal appearing white matter" (NAWM) and these alterations are visible with the MT technique. These results indicate that MT imaging may be a relevant approach to detect both global and local alterations within NAWM in "asymptomatic" carriers of premutations in the Fragile X Mental Retardation 1 (FMR1) gene. The sensitivity of MT in the detection of these alterations might point towards a specific physiopathological mechanism linked to an underlying myelin disorder. ROI-based analyses show that the frontal, parahippocampal and cerebellar regions are already significantly affected before the onset of symptoms. A larger sample will allow us to determine the minimum CGG expansion and age associated with these subclinical white matter alterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to advances in neonatal intensive care over the last decades, the pattern of brain injury seen in very preterm infants has evolved in more subtle lesions that are still essential to diagnose in regard to neurodevelopmental outcome. While cranial ultrasound is still used at the bedside, magnetic resonance imaging (MRI) is becoming increasingly used in this population for the assessment of brain maturation and white and grey matter lesions. Therefore, MRI provides a better prognostic value for the neurodevelopmental outcome of these preterms. Furthermore, the development of new MRI techniques, such as diffusion tensor imaging, resting state functional connectivity and magnetic resonance spectroscopy, may further increase the prognostic value, helping to counsel parents and allocate early intervention services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PERFORM MRI Project was an ancillary study of the PERFORM trial. Its aim was to investigate the potential effects of terutroban in patients with atherothrombotic disorders, in comparison to aspirin, on the evolution of magnetic resonance imaging (MRI) lesions after a recent ischemic stroke or transient ischemic attack (TIA). The change in both hypointense and hyperintense lesions on the fluid attenuated inversion recovery (FLAIR) sequence, in the total brain volume and in the hippocampal volume from baseline (M1) to the final visit (M24) was assessed as well as the number of emergent microbleeds. A total of 748 patients had their MRI examination validated both at M1 and M24 during the study. At baseline, the volume of hypointense and hyperintense lesions on FLAIR images, the total brain volume, the hippocampal volume and the number of patients with microbleeds did not differ between the two groups. During follow-up, the mean volumetric increase of lesions hypointense or hyperintense on FLAIR images (from 5 to 8 %), the mean reduction of total brain volume (−0.4 %) and of hippocampal volume (−4 %), did not differ between the two treatment arms. The same parameters analysed ipsilateral to the ischaemic lesion did not differ either between the two groups. In the terutroban group, 16.3 % of patients presented with emergent microbleeds, 10.7 % in the aspirin group; this difference was not significant. In the PERFORM study, the progression of FLAIR lesions, of cerebral or hippocampal atrophy and of microbleeds did not differ between patients treated by terutroban and those treated by aspirin.