72 resultados para cell homing

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer immunotherapy has great promise, but is limited by diverse mechanisms used by tumors to prevent sustained antitumor immune responses. Tumors disrupt antigen presentation, T/NK-cell activation, and T/NK-cell homing through soluble and cell-surface mediators, the vasculature, and immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells. However, many molecular mechanisms preventing the efficacy of antitumor immunity have been identified and can be disrupted by combination immunotherapy. Here, we examine immunosuppressive mechanisms exploited by tumors and provide insights into the therapies under development to overcome them, focusing on lymphocyte traffic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bladder cancer is a common urologic malignancy with rising incidence in the elderly population. In most cases, bladder cancer is non-muscle-invasive at diagnosis and shows dramatically high recurrence rates, although current treatments often reduce the risk of disease progression. Immunotherapy using intravesical instillation of Bacillus Calmette-Guérin (BCG) remains the most effective therapy for patients with high risk tumors. However, BCG-therapy has important limitations including substantial adverse events and frequent treatment failure. Thus, it appears crucial to either improve or replace current therapy using new immunotherapeutic strategies. Here, we discuss the clinical trials that assessed therapeutic vaccination of bladder cancer patients using tumor associated antigens and we also argue for novel approaches arising from murine models. Vaccination routes to induce appropriate T-cell homing in the tumor site as well as the use of local immunostimulation to enhance recruitment of vaccine-induced T cells are discussed to highlight what we believe is a promising therapeutic vaccination strategy for patients with non-muscle-invasive bladder cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les cancers du col utérin et de la vessie prennent tous deux leur origine dans les sites muqueux et peuvent évoluer lentement de lésions superficielles (lésions squameuses intra-épithéliales de bas à haut grade (HSIL) et carcinomes in situ du col utérin (CIS); ou tumeurs non musculo-invasives de la vessie (NMIBC)) à des cancers invasifs plus avancés. L'éthiologie de ces deux cancers est néanmoins très différente. Le cancer du col utérin est, à l'échelle mondiale, le deuxième cancer le plus mortel chez la femme. Ce cancer résulte de l'infection des cellules basales de l'épithélium stratifié du col utérin par le papillomavirus humain à haut risque (HPV). Les vaccins prophylactiques récemment développés contre le HPV (Gardasil® et Cervarix®) sont des moyens de prévention efficaces lorsqu'ils sont administrés chez les jeunes filles qui ne sont pas encore sexuellement actives; cependant ces vaccins ne permettent pas la régression des lésions déjà existantes. Malgré un développement actif, les vaccins thérapeutiques ciblant les oncogènes viraux E6/E7 n'ont montré qu'une faible efficacité clinique jusqu'à présent. Nous avons récemment démontré qu'une immunisation sous-cutanée (s.c.) était capable de faire régresser les petites tumeurs génitales chez 90% des souris, mais chez seulement 20% des souris présentant de plus grandes tumeurs. Dans cette étude, nous avons développé une nouvelle stratégie où la vaccination est associée à une application locale (intra-vaginale (IVAG)) d'agonistes de TLR. Celle-ci induit une augmentation des cellules T CD8 totales ainsi que T CD8 spécifiques au vaccin, mais pas des cellules T CD4. L'attraction sélective des cellules T CD8 est permise par leur expression des récepteurs de chemokines CCR5 et CXCR3 ainsi que par les ligants E-selectin. La vaccination, suivie de l'application IVAG de CpG, a conduit, chez 75% des souris, à la régression de grandes tumeurs établies. Le cancer de la vessie est le deuxième cancer urologique le plus fréquente. La plupart des tumeurs sont diagnostiquées comme NMIBC et sont restreintes à la muqueuse de la vessie, avec une forte propension à la récurrence et/ou progression après une résection locale. Afin de développer des vaccins contre les antigènes associés à la tumeur (TAA), il est nécessaire de trouver un moyen d'induire une réponse immunitaire CD8 spécifique dans la vessie. Pour ce faire, nous avons comparé différentes voies d'immunisation, en utilisant un vaccin composé d'adjuvants et de l'oncogène de HPV (E7) comme modèle. Les vaccinations s.c. et IVAG ont toutes deux induit un nombre similaire de cellules T CD8 spécifiques du vaccin dans la vessie, alors que l'immunisation intra-nasale fut inefficace. Les voies s.c. et IVAG ont induit des cellules T CD8 spécifiques du vaccin exprimant principalement aL-, a4- et le ligand d'E-selectin, suggérant que ces intégrines/sélectines sont responsables de la relocalisation des cellules T dans la vessie. Une unique immunisation avec E7 a permis une protection tumorale complète lors d'une étude prophylactique, indépendemment de la voie d'immunisation. Dans une étude thérapeutique, seules les vaccinations s.c. et IVAG ont efficacement conduit, chez environ 50% des souris, à la régression de tumeurs de la vessie établies, alors que l'immunisation intra-nasale n'a eu aucun effet. La régression de la tumeur est correlée avec l'infiltration dans la tumeur des cellules T CD8 spécifiques au vaccin et la diminution des cellules T régulatrices (Tregs). Afin d'augmenter l'efficacité de l'immunisation avec le TAA, nous avons testé une vaccination suivie de l'instillation d'agonistes de TLR3 et TLR9, ou d'un vaccin Salmonella Typhi (Ty21a). Cette stratégie a entraîné une augmentation des cellules T CD8 effectrices spécifiques du vaccin dans la vessie, bien qu'à différentes échelles. Ty21a étant l'immunostimulant le plus efficace, il mérite d'être étudié de manière plus approfondie dans le contexte du NMIBC. - Both cervical and bladder cancer originates in mucosal sites and can slowly progress from superficial lesions (low to high-grade squamous intra-epithelial lesions (HSIL) and carcinoma in situ (CIS) in the cervix; or non-muscle invasive tumors in the bladder (NMIBC)), to more advanced invasive cancers. The etiology of these two cancers is however very different. Cervical cancer is the second most common cause of cancer death in women worldwide. This cancer results from the infection of the basal cells of the stratified epithelium of the cervix by high-risk human papillomavirus (HPV). The recent availability of prophylactic vaccines (Gardasil® and Cervarix®) against HPV is an effective strategy to prevent this cancer when administered to young girls before sexual activity; however, these vaccines do not induce regression of established lesions. Despite active development, therapeutic vaccines targeting viral oncogenes E6/E7 had limited clinical efficacy to date. We recently reported that subcutaneous (s.c.) immunization was able to regress small genital tumors in 90% of the mice, but only 20% of mice had regression of larger tumors. Here, we developed a new strategy where vaccination is combined with the local (intravaginal (IVAG)) application of TLR agonists. This new strategy induced an increase of both total and vaccine-specific CD8 T cells in cervix-vagina, but not CD4 T cells. The selective attraction of CD8 T cells is mediated by the expression of CCR5 and CXCR3 chemokine receptors and E-selectin ligands in these cells. Vaccination followed by IVAG application of CpG resulted in tumor regression of large established tumors in 75% of the mice. Bladder cancer is the second most common urological malignancy. Most tumors are diagnosed as NMIBC, and are restricted to the mucosal bladder with a high propensity to recur and/or progress after local resection. Aiming to develop vaccines against tumor associated antigens (TAA) it is necessary to investigate how to target vaccine-specific T-cell immune responses to the bladder. Here we thus compared using an adjuvanted HPV oncogene (E7) vaccine, as a model, different routes of immunization. Both s.c. and IVAG vaccination induced similar number of vaccine-specific CD8 T-cells in the bladder, whereas intranasal (i.n.) immunization was ineffective. S.c. and IVAG routes induced predominantly aL-, a4- and E-selectin ligand-expressing vaccine-specific CD8 T-cells suggesting that these integrin/selectin are responsible for T-cell homing to the bladder. A single E7 immunization conferred full tumor protection in a prophylactic setting, irrespective of the immunization route. In a therapeutic setting, only ivag and s.c. vaccination efficiently regressed established bladder-tumors in ca. 50 % of mice, whereas i.n. immunization had no effect. Tumor regression correlated with vaccine- specific CD8 T cell tumor-infiltration and decrease of regulatory T cells (Tregs). To increase efficacy of TAA immunization, we tested vaccination followed by the local instillation of TLR3 or TLR9 agonist or of a Salmonella Typhi vaccine (Ty21a). This strategy resulted in an increase of vaccine-specific effector CD8 T cells in the bladder, although at different magnitudes. Ty21a being the most efficient, it deserves further investigation in the context of NMIBC. We further tested another strategy to improve therapies of NMIBC. In the murine MB49 bladder tumor model, we replaced the intravesical (ives) BCG therapy by another vaccine strain the Salmonella Ty21a. Ives Ty21a induced bladder tumor regression at least as efficiently as BCG. Ty21a bacteria did not infect nor survive neither in healthy nor in tumor-bearing bladders, suggesting its safety. Moreover, Ty21a induced a transient inflammatory response in healthy bladders, mainly through infiltration of neutrophils and macrophages that rapidly returned to basal levels, confirming its potential safety. The tumor regression was associated to a robust infiltration of immune cells, and secretion of cytokines in urines. Infection of murine tumor cell lines by Ty21a resulted in cell apoptosis. The infection of both murine and human urothelial cell lines induced secretion of in vitro inflammatory cytokines. Ty21a may be an attractive alternative for the ives treatment of NMIBC after transurethral resection and thus deserves more investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumor antigen-specific cytotoxic T cells (CTLs) play a major role in the adaptive immune response to cancers. This CTL response is often insufficient because of functional impairment, tumor escape mechanisms, or inhibitory tumor microenvironment. However, little is known about the fate of given tumor-specific CTL clones in cancer patients. Studies in patients with favorable outcomes may be very informative. In this longitudinal study, we tracked, quantified, and characterized functionally defined antigen-specific T-cell clones ex vivo, in peripheral blood and at tumor sites, in two long-term melanoma survivors. MAGE-A10-specific CD8+ T-cell clones with high avidity to antigenic peptide and tumor lytic capabilities persisted in peripheral blood over more than 10 years, with quantitative variations correlating with the clinical course. These clones were also found in emerging metastases, and, in one patient, circulating clonal T cells displayed a fully differentiated effector phenotype at the time of relapse. Longevity, tumor homing, differentiation phenotype, and quantitative adaptation to the disease phases suggest the contribution of the tracked tumor-reactive clones in the tumor control of these long-term metastatic survivor patients. Focusing research on patients with favorable outcomes may help to identify parameters that are crucial for an efficient antitumor response and to optimize cancer immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : The Wiskott-Aldrich Syndrome (WAS) is an X-linked recessive human primary immunodeficiency. It is caused by mutations in the gene encoding the hermatopoietic specific regulator of the actin cytoskeleton Wiskott-Aldrich Syndrome Protein (WASP). Importantly, a majority of affected patients develop autoimmunity including an inflammatory bowel disease (IBD)-like disease. WASP deficient mice share many similarities with the human WAS. One of these similarities is the spontaneous development of colitis. I have focused my dissertation studies on the pathogenesis of colitis in WASP deficient mice. Prior work from our laboratory had shown that lymphocytes were required and that CD4+ T cells sufficient for colitis development. This colitis was associated with a predominant Th2-cytokine skewing. I have contributed in exploring whether the Th2 cytokine IL-4 plays a role in disease maintenance. Using two approaches to neutralize IL-4, we found that this cytokine plays a role in disease maintenance. Natural CD4*CD25*Foxp3* regulatory T cells (nTreg cells) have been implicated in the pathogenesis of several autoimmune disorders. We found that WASP deficient mice have reduced nTreg cell numbers in peripheral lymphoid organs. This was associated with functional defects in suppressing T cell proliferation and preventing colitis induced by transfer of naïve T cells into SCID recipient, which lack lymphocytes. WASP deficiency affected homing of nTreg cells to lymphoid compartments, IL-2-mediated activation and secretion of the immunomodulatory cytokine IL-10. Finally, we could prevent colitis onset via adoptive transfer of WT nTreg cells prior to colitis development. This suggests that nTreg cells dysfunction is one of the mechanisms underlying colitis development in WASP deficient mice. Future directions will aim at deciphering the role of other immune cell types, the bacterial flora, and various cytokines in colitis development in this murine model of colitis. In addition, we believe that colitis in WASP deficient mice could serve as a useful tool to evaluate nTreg cells manipulation as novel therapeutic approach for IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the presence of tumor-specific effector cells in the circulation of cancer patients, the immune response of the majority of these patients is not sufficient to prevent the growth and spread of their tumors. That tumor cells can be killed in vitro by tumor-reactive cytotoxic T cells is testimony to the fact that the tumors are not inherently resistant to T cell killing, but rather that there is a failure in immune recognition and effector cell activation. Many reasons for this failure of the body's defense system have been suggested, including the inability of tumor-reactive lymphocytes to migrate to tumor tissue. Here we designed a strategy to improve homing of primary lymphocytes into vascularized tumors. As a homing molecule we selected the integrin alpha v beta 3 since it is expressed by angiogenic vascular endothelium in tumors. To promote lymphocyte adhesion to alpha v beta 3 we "painted" primary lymphocytes with a recombinant, glycosylphosphatidylinositol-linked high-affinity ligand for alpha v beta 3. These painted lymphocytes specifically bound to alpha v beta 3 in vitro and homed to vascularized, solid tumors in vivo. This novel strategy may provide a significant advance in anti-tumor treatment such as adoptive immune therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of cancer patients revealed high diversity in oncogenic mechanisms, leading to increased treatment individualization for subgroups of patients with frequent cancers. A similar development may not be possible for patients with rare cancers, such as Merkel cell carcinoma (MCC). Finding shared disease mechanisms may open new options to understanding and treating such tumors. Tumor-infiltrating CD8+ T cells are frequently associated with favorable clinical outcome in a remarkably large spectrum of cancers. In this issue, Afanasiev et al. suggest a mechanism that may hinder the tumor homing of CD8+ T cells in MCC patients. It is possible that therapeutic mobilization of anti-cancer T cells may be useful in patients who share this specific immune biological feature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared it with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/ NYVAC-C vaccine regimen. Smallpox-specific CD4 T-cell responses were present in the blood of 52% of the subjects studied, while smallpox-specific CD8 T cells were rarely detected (12%). With one exception, smallpox-specific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed α4β7 integrins and the HIV coreceptor CCR5. These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and the depletion of CD4 T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment. TCR sequencing also revealed that this particular clone arose at least 1 year before vaccination, displayed long-term persistence, and efficient homing to metastases. Remarkably, during concomitant vaccination over 3.5 years, the frequency of the pre-existing clone progressively increased, reaching up to 2.5% of the circulating CD8 pool while its effector functions were enhanced. In parallel, the disease stabilized, but subsequently progressed with loss of Melan-A expression by melanoma cells. Collectively, combined ex vivo analysis of T cell differentiation and clonality revealed for the first time a strong expansion of a tumor Ag-specific human T cell clone, comparable to protective virus-specific T cells. The observed successful boosting by peptide vaccination support further development of immunotherapy by including strategies to overcome immune escape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of tissue-specific homing molecules directs antigen-experienced T cells to particular peripheral tissues. In studies using soluble antigens that focused on skin and gut, antigen-presenting cells (APCs) within regional lymphoid tissues were proposed to be responsible for imprinting homing phenotypes. Whether this occurs in other sites and after physiologic antigen processing and presentation is unknown. We define in vivo imprinting of distinct homing phenotypes on monospecific T cells responding to antigens expressed by tumors in intracerebral, subcutaneous, and intraperitoneal sites with efficient brain-tropism of CD8 T cells crossprimed in the cervical lymph nodes (LNs). Multiple imprinting programs could occur simultaneously in the same LN when tumors were present in more than one site. Thus, the identity of the LN is not paramount in determining the homing phenotype; this critical functional parameter is dictated upstream at the site of antigen capture by crosspresenting APCs.