4 resultados para cations
em Université de Lausanne, Switzerland
Resumo:
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.
Resumo:
Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.
Resumo:
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).
Resumo:
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.