3 resultados para cation
em Université de Lausanne, Switzerland
Resumo:
Cation exchange chromatography (CEX) is a well established strategy for the characterization of monoclonal antibodies (mAbs). The optimization of mobile phase conditions is well described in the literature, but there is a lack of information about CEX stationary phases for the analysis of therapeutic proteins. The aim of this study was to compare five state-of-the-art CEX stationary phases based on the retention, selectivity and resolving power achieved in pH- and salt-gradient modes, with various therapeutic mAbs and their variants. The Sepax Antibodix WCX-NP3, Thermo MAbPac SCX-10 RS, YMC BioPro SP-F, Waters Protein-Pak Hi Res SP and Agilent Bio mAb NP1.7 SS were considered in this study. In terms of retention, the YMC Bio Pro SP-F material was the less retentive one, while the Agilent Bio mAb NP1.7 SS provides the highest retention. Regarding the selectivity achieved between the main mAbs isoforms and their variants, the Thermo MabPac SCX column generally gave the highest selectivity. Finally, it was hard to rank columns in term of kinetic performance since their performance is strongly solute (mAb) and elution mode (pH or salt gradient) dependent. However, the highest resolution--in most cases--was observed on the strong cation exchanger YMC Bio Pro SP-F material.
Resumo:
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.
Resumo:
Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in approximately 60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.