2 resultados para car-following models

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: This study sought to increase understanding of women's thoughts and feelings about decision making and the experience of subsequent pregnancy following stillbirth (intrauterine death after 24 weeks' gestation). METHODS: Eleven women were interviewed, 8 of whom were pregnant at the time of the interview. Modified grounded theory was used to guide the research methodology and to analyze the data. RESULTS: A model was developed to illustrate women's experiences of decision making in relation to subsequent pregnancy and of subsequent pregnancy itself. DISCUSSION: The results of the current study have significant implications for women who have experienced stillbirth and the health professionals who work with them. Based on the model, women may find it helpful to discuss their beliefs in relation to healing and health professionals to provide support with this in mind. Women and their partners may also benefit from explanations and support about the potentially conflicting emotions they may experience during this time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.