8 resultados para bottom ash
em Université de Lausanne, Switzerland
Resumo:
We investigate the benefits and experimental feasibility of approaches enabling the shift from short (1.7kDa on average) peptides in bottom-up proteomics to about twice longer (~3.2kDa on average) peptides in the so-called extended bottom-up proteomics. Candida albicans secreted aspartic protease Sap9 has been selected for evaluation as an extended bottom-up proteomic-grade enzyme due to its suggested dibasic cleavage specificity and ease of production. We report the extensive characterization of Sap9 specificity and selectivity revealing that protein cleavage by Sap9 most often occurs in the vicinity of proximal basic amino acids, and in select cases also at basic and hydrophobic residues. Sap9 is found to cleave a large variety of proteins in a relatively short, ~1h, period of time and it is efficient in a broad pH range, including slightly acidic, e. g., pH5.5, conditions. Importantly, the resulting peptide mixtures contain representative peptides primarily in the target 3-7kDa range. The utility and advantages of this enzyme in routine analysis of protein mixtures are demonstrated and the limitations are discussed. Overall, Sap9 has a potential to become an enzyme of choice in an extended bottom-up proteomics, which is technically ready to complement the traditional bottom-up proteomics for improved targeted protein structural analysis and expanded proteome coverage. BIOLOGICAL SIGNIFICANCE: Advances in biological applications of mass spectrometry-based bottom-up proteomics are oftentimes limited by the extreme complexity of biological samples, e.g., proteomes or protein complexes. One of the reasons for it is in the complexity of the mixtures of enzymatically (most often using trypsin) produced short (<3kDa) peptides, which may exceed the analytical capabilities of liquid chromatography and mass spectrometry. Information on localization of protein modifications may also be affected by the small size of typically produced peptides. On the other hand, advances in high-resolution mass spectrometry and liquid chromatography have created an intriguing opportunity of improving proteome analysis by gradually increasing the size of enzymatically-derived peptides in MS-based bottom-up proteomics. Bioinformatics has already confirmed the envisioned advantages of such approach. The remaining bottle-neck is an enzyme that could produce longer peptides. Here, we report on the characterization of a possible candidate enzyme, Sap9, which may be considered for producing longer, e.g., 3-7kDa, peptides and lead to a development of extended bottom-up proteomics.
Resumo:
Despite the recent advances in structural analysis of monoclonal antibodies with bottom-up, middle-down, and top-down mass spectrometry (MS), further improvements in analysis accuracy, depth, and speed are needed. The remaining challenges include quantitatively accurate assignment of post-translational modifications, reduction of artifacts introduced during sample preparation, increased sequence coverage per liquid chromatography (LC) MS experiment, and ability to extend the detailed characterization to simple antibody cocktails and more complex antibody mixtures. Here, we evaluate the recently introduced extended bottom-up proteomics (eBUP) approach based on proteolysis with secreted aspartic protease 9, Sap9, for analysis of monoclonal antibodies. Key findings of the Sap9-based proteomics analysis of a single antibody include: (i) extensive antibody sequence coverage with up to 100% for the light chain and up to 99-100% for the heavy chain in a single LC-MS run; (ii) connectivity of complementarity-determining regions (CDRs) via Sap9-produced large proteolytic peptides (3.4 kDa on average) containing up to two CDRs per peptide; (iii) reduced artifact introduction (e. g., deamidation) during proteolysis with Sap9 compared to conventional bottom-up proteomics workflows. The analysis of a mixture of six antibodies via Sap9-based eBUP produced comparable results. Due to the reasons specified above, Sap9-produced proteolytic peptides improve the identification confidence of antibodies from the mixtures compared to conventional bottom-up proteomics dealing with shorter proteolytic peptides.
Resumo:
The Monte San Giorgio (Southern Alps, Ticino, Switzerland) is the most important locality in the world for vertebrates dating back to the Middle Triassic. For this reason it was registered in 2003 as a UNESCO World Heritage Site. One of the objectives of this doctoral thesis was to fill some of the cognitive gaps regarding the Ladinian succession, including in particular the San Giorgio Dolomite and the Meride Limestone. In order to achieve this, the entire succession, more than 600 metres thick, was measured and sampled. Biostratigraphic research based on new finds of fossil invertebrates and microfossils and on the palynological analysis of the entire section was integrated with single-zircon U-Pb dating of volcanic ash layers intercalated in the carbonate succession. This enabled a redefinition of the bio-chronostratigraphic and geochronologic framework of the succession, which encompasses a significantly shorter time interval than previously held. The Ladinian section extends from the E. curionii Ammonoid Zone (Early Fassanian) to the P. archelaus Ammonoid Zone (Early Longobardian). The age of the classic fossiliferous levels of the Meride Limestone, rich in organic matter and containing vertebrate fossils which are known all over the world, was defined in both biostratigraphic and geochronologic terms. The presumed stratigraphie significance of the pachypleurosaurid reptiles found in such levels is called into question by new finds. These fossiliferous horizons were found to correspond to the main volcanoclastic intervals of the Buchenstein Formation (Middle and Upper Pietra Verde). Thus, a correlation with the Bagolino Section (Italy) containing the GSSP for the base of the Ladinian was proposed. Bulk sedimentation rates in the studied succession average 200 m/Myr and therefore prove to be 20 times higher than those of the South-Alpine pelagic basins. These values express high carbonate productivity from the surrounding platforms on one hand, and on the other a marked subsidence of the basin. Only in the intervals consisting of laminated limestones did the sedimentation rates drop to average values of around 30 m/Myr. The distribution of organic and inorganic facies appears to be the consequence of relative variations in sea-level. The laminated and organic-matter- rich intervals of the Meride Limestone are linked to a relative sea-level drop which favoured dysoxic to anoxic bottom-water conditions, coupled with an increase in runoff, perhaps due to recurrent explosive volcanic activity. The transient development under dysoxic conditions of monospecific benthic meio-/macrofaunas was documented. Organic matter suggests a predominant origin due to benthic bacterial activity, as can be witnessed in alveolar structures typical of exopolymeric substances secreted by bacteria within microbial mats. A microbial contribution to the carbonate (peloidal) precipitation was documented. The protective effect exerted by these microbial mats is also indicated as the main taphonomic factor contributing to the excellent preservation of vertebrate fossils. A radiolarian assemblage discovered in the lower part of the section (earliest Ladinian, E. curionii Zone) suggests the transient existence of open-marine but not deep-water connections with the tethyan pelagic basins. It shows marked similarities to the faunas typical of the late Anisian, suggesting therefore a low resolution power provided by radiolarian biostratigraphy in recognizing the Anisian/Ladinian boundary. The present thesis describes a new species of conifer (Elatocladus cassinae), a new species of insect (Dasyleptus triassicus) and seven new species of radiolarians (Eptingium danieli, Eptingium neriae, Parentactinosphaera eoladinica, Sepsagon ticinensis, Sepsagon? valporinae, Novamuria wirzi and Pessagnollum? hexaspinosum). In addition, following revision of the type material of already existent taxa, four new genera of radiolarians are introduced: Bernoulliella, Eohexastylus, Ticinosphaera and Lahmosphaera.