4 resultados para bivalve mollusk
em Université de Lausanne, Switzerland
Resumo:
The increase in seafood production, especially in mariculture worldwide, has brought out the need of continued monitoring of shellfish production areas in order to ensure safety to human consumption. The purpose of this research was to evaluate pathogenic protozoa, viruses and bacteria contamination in oysters before and after UV depuration procedure, in brackish waters at all stages of cultivation and treatment steps and to enumerate microbiological indicators of fecal contamination from production site up to depuration site in an oyster cooperative located at the Southeastern estuarine area of Brazil. Oysters and brackish water were collected monthly from September 2009 to November 2010. Four sampling sites were selected for enteropathogens analysis: site 1- oyster growth, site 2- catchment water (before UV depuration procedure), site 3 - filtration stage of water treatment (only for protozoa analysis) and site 4- oyster's depuration tank. Three microbiological indicators ! were examined at sites 1, 2 and 4. The following pathogenic microorganisms were searched: Giardia cysts, Cryptosporidium oocysts, Human Adenovirus (HAdV), Hepatitis A virus (HAV), Human Norovirus (HnoV) (genogroups I and II), JC strain Polyomavirus (JCPyV) and Salmonella sp. Analysis consisted of molecular detection (qPCR) for viruses (oysters and water samples); immunomagnetic separation followed by direct immunofluorescence assay for Cryptosporidium oocysts and Giardia cysts and also molecular detection (PCR) for the latter (oysters and water samples); commercial kit (Reveal-Neogee (R)) for Salmonella analysis (oysters). Giardia was the most prevalent pathogen in all sites where it was detected: 36.3%, 18.1%, 36.3% and 27.2% of water from sites 1, 2, 3 and 4 respectively; 36.3% of oysters from site 1 and 54.5% of depurated oysters were harboring Giardia cysts. The huge majority of contaminated samples were classified as Giardia duodenalis. HAdv was detected in water and o! ysters from growth site and HnoV GI in two batches of oysters ! (site 1) in huge concentrations (2.11 x 10(13), 3.10 x 10(12) gc/g). In depuration tank site, Salmonella sp., HAV (4.84 x 10(3)) and HnoV GII (7.97 x 10(14)) were detected once in different batches of oysters. Cryptosporidium spp. oocysts were present in 9.0% of water samples from site four. These results reflect the contamination of oysters even when UV depuration procedures are employed in this shellfish treatment plant. Moreover, the molecular comprehension of the sources of contamination is necessary to develop an efficient management strategy allied to shellfish treatment improvement to prevent foodborne illnesses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Pesticide run-off into the ocean represents a potential threat to marine organisms, especially bivalves living in coastal environments. However, little is known about the effects of environmentally relevant concentrations of pesticides at the individual level. In this study, the suppression subtractive hybridisation technique was used to discover the main physiological function affected by a cocktail of three pesticides (lindane, metolachlor and carbofuran) in the Pacific oyster Crassostrea gigas. Two oyster populations exposed to different pollution levels in the wild were investigated. The pesticide concentrations used to induce stress were close to those found in the wild. In a time course experiment, the expression of three genes implicated in iron metabolism and oxidative stress as well as that of two ubiquitous stress proteins was examined. No clear regulation of gene or protein expression was found, potentially due to a low-dose effect. However, we detected a strong site- and organ-specific response to the pesticides. This study thus (1) provides insight into bivalve responses to pesticide pollution at the level of the transcriptome, which is the first level of response for organisms facing pollution, and (2) raises interesting questions concerning the importance of the sites and organs studied in the toxicogenomic field.
Resumo:
The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the Wadi Wasit area (Central Oman Mountains), Dienerian breccias are widespread. These breccias consist mostly of Guadalupian reefal blocks, often dolomitised, and some rare small-sized blocks of lowermost Triassic bivalve-bearing limestones. A unique block, with a size of about 200 m(3), including Permian and earliest Triassic faunas has been studied in detail. The so-called Wadi Wasit block consists of three major lithological units. A basal unstratified grey limestone is rich in various reef-building organisms (rugose corals, calcareous sponges, stromatoporoids) and has been dated as Middle Permian. It is disconformably overlain by well- and thin-bedded light grey to yellowish coloured limestones rich in molluscs. Two major lithologies (Coquina Limestone respectively Bioclastic Limestone unit) characterise the shelly limestones, their contact seems gradual. These two units are well-dated; they are of Griesbachian age and contain three conodont zones, the Parvus Zone, the Staeschei Zone and the Sosioensis Zone, and two ammonoid zones, the Ophiceras tibeticum Zone and an 'unnamed interval'. The third unit consists of a grey marly limestone containing Neospathodus kummeli (basal Dienerian). It is the first record of well-dated basal Triassic sediments in the Arabian Peninsula. The Coquina Limestone is dominated by the bivalve Promyalina with some Claraia and Eumorphotis. This bivalve association is interpreted as a pioneering opportunistic assemblage. Towards the top of the Bioclastic Limestone unit, the faunal diversity increases and contains probably more than 20 taxa of bivalves, microgastropods, crinoids, brachiopods, ammonoids, echinoid spines, ostracods and conodonts. The generic diversity of this biofacies exceeds by far any other Griesbachian assemblage known. Our data give new evidence for the geodynamical history for the distal carbonate shelf bordering the Hawasina Basin. A break in the sedimentation characterises the Late Permian. The basal Triassic shows a steady transgression and the breccias may record a distinct gravitational collapse of platform margins linked with sea-level low stand at the end of Induan time (late Dienerian-basal Smithian). delta(13)C(carb) isotopic analyses were performed and yield typical Permian values of around 4parts per thousand for the Reefal Limestone, with a strong negative shift across the Permian-Triassic boundary. During the Griesbachian values shift positively from 0.5 to 3.1parts per thousand parallel to an increase in faunal diversity and probably primary productivity. The detailed faunal analysis and the discovery of an unexpected diversity give,us a new understanding of the recovery of the Early Triassic marine ecosystem.