20 resultados para bedrock
em Université de Lausanne, Switzerland
Resumo:
Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of similar to 1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO(3), 4330 mg/L Fe and 29,250 mg/L SO(4). Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO(4)). The variations in the H and 0 isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI similar to 0.25) and anglesite (SI similar to 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI similar to 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI similar to -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (similar to 90 wt.% water) of pH similar to 1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb approximate to Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu. and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn: all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock-dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models.
Resumo:
Oolitic carbonates belonging to the Hauptrogenstein Formation of Bajocian (Middle Jurassic) age have been shown to be anomalously enriched in cadmium (Cd) throughout the Jura Mountains. Soils associated with this type of rock substratum may be naturally polluted with regards to Cd. At Schleifenberg (Canton Basel Land, Switzerland) the Hauptrogenstein Formation is almost entirely exposed along a trail on its SW flank. Cadmium concentrations were systematically measured throughout this formation and Cd enrichments in rocks are shown to occur to a maximum content of 4.9 mg kg(-1). We investigated associated soils, which cover the entire outcrop, and show that they have been formed through the weathering of the underlying bedrock and through the uptake of colluvial limestone fragments from the same and older formations. Cadmium contents in the soils reach a maximum value of 2.0 mg kg(-1), thereby exceeding the official Swiss indicative guideline value for soils fixed at 0.8 mg.kg(-1). Mineralogical analyses on the soils and associated bedrock suggest that no allochthonous component related to aeolian transport is present. Sequential extractions applied to selected soil samples show that about half of the Cd resides in the carbonate fraction coming from the fractured parent-rock, while the Cd released from the weathered carbonates is associated either with organic matter (over 10%) or with Fe and Mn-oxihydroxides (approximately 30%). No exchangeable Cd phase was found and this, together with the buffer capacity of this calcareous soil, suggests that the amount of mobile Cd is quite negligible in this soil, which also greatly reduces the amount of bioavailable
Resumo:
The oxalate-carbonate pathway (OCP) is a biogeochemical process, which has been described in Milicia excelsa tree ecosystems of Africa. This pathway involves biological and geological parameters at different scales: oxalate, as a by-product of photosynthesis, is oxidized by oxalotrophic bacteria leading to a local pH increase, and eventually to carbonate accumulation through time in previously acidic and carbonate-free tropical soils. Former studies have shown that this pedogenic process can potentially lead to the formation of an atmospheric carbon sink. Considering that 80% of plant species are known to produce oxalate, it is reasonable to assume that M. excelsa is not the only tree that can support OCP ecosystems. The search for similar conditions on another continent led us to South America, in an Amazon forest ecosystem (Alto Beni, Bolivia). This area was chosen because of the absence of local inherited carbonate in the bedrock, as well as its expected acidic soil conditions. Eleven tree species and associated soils were tested positive for the presence of carbonate with a more alkaline soil pH close to the tree than at a distance from it. A detailed study of Pentaplaris davidsmithii and Ceiba speciosa trees showed that oxalotrophy impacted soil pH in a similar way to at African sites (at least with 1 pH unit increasing). African and South American sites display similar characteristics regarding the mineralogical assemblage associated with the OCP, except for the absence of weddellite. The amount of carbonate accumulated is 3 to 4 times lower than the values measured in African sites related to M. excelsa ecosystems. Still, these secondary carbonates remain critical for the continental carbon cycle, as they are unexpected in the acidic context of Amazonian soils. Therefore, the present study demonstrates the existence of an active OCP in South America. The three critical components of an operating OCP are the presence of: i) local alkalinization, ii) carbonate accumulations, and iii) oxalotrophic bacteria, which were identified associated to the oxalogenic tree C. speciosa. If the question of a potential carbon sink related to oxalotrophic-oxalogenic ecosystems in the Amazon Basin is still pending, this study highlights the implication of OCP ecosystems on carbon and calcium biogeochemical coupled cycles. As previously mentioned for M. excelsa tree ecosystems in Africa, carbonate accumulations observed in the Bolivian tropical forest could be extrapolated to part or the whole Amazon Basin and might constitute an important reservoir that must be taken into account in the global carbon balance of the Tropics.
Resumo:
Regions under tropical rainforest cover, such as central Africa and Brazil are characterised by degradation and dismantling of old ferricrete structures. In southern Cameroon, these processes are relayed by present-day ferruginous accumulation soil facies, situated on the middle and the lower part of hill slopes. These facies become progressively harder towards the surface, containing from bottom to top, mainly kaolinite, kaolinite-goethite and Al-rich goethite-hematite, and are discontinuous to the relictic hematite-dominated ferricrete that exist in the upper part of the hill slope. These features were investigated in terms of geochemical differentiation of trace elements. It appears that, in contrast to the old ferricrete facies, the current ferruginous accumulations are enriched in transitional trace elements (V, Cr, Co, Y, Sc) and Ph, while alkali-earth elements are less differentiated. This recent chemical accumulation is controlled both by intense weathering of the granodiorite bedrock and by mobilisation of elements previously accumulated in the old ferricrete. The observed processes are clearly linked to the present-day humid climate with rising groundwater tables. They slowly replace the old ferricretes formed during Cretaceous time under more seasonal climatic conditions, representing an instructive case of continuos global change. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650?1930 and AD 1930?2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre-existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre-existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.
Resumo:
We analysed the composition of phyllosilicate minerals in sediments deposited by the Rhone and Oberaar glaciers (Swiss Alps), in order to identify processes and rates of biogeochemical weathering in relation to glacial erosion. The investigated sediments are part of chronosequences consisting of (A) suspended, "fresh" sediment in melt water; (B) terminal moraines from the Little Ice Age (LIA; approximately 1560-1850); and (C) tilts of the Younger Dryas interval (YD; approximately 11'500y BP). Secondary weathering products associated with the suspended sediment have not been observed: we therefore exclude intermittent subglacial storage and weathering of this material and assume that the suspended sediment is directly derived from mechanically abraded bedrock. This implies that biogeochemical weathering processes started once the glacially-derived sediment was deposited in the proglacial area. The combination of a developing vegetation cover, the generally high permeability allowing the percolation of precipitation, and the chemical reactivity related to the dominance of fine-grained material (<63 pm) drives the weathering process and the initial Umbrepts present in LIA profiles undergo podzolisation and lead to the formation of Humods observed in YD profiles. Systematic XRD analyses of these chronosequences show a progressive decrease in biotite contents and a concomitant increase in pedogenically formed vermiculite with increasing sediment age. Biotite contents decrease by 25-50% in the upper 30 cm of the moraines after 145-275 yr in the proglacial environment. Biotite weathering rates are calculated using the difference in the biotite content between unweathered and weathered glacial sediments within the investigated profiles. The reactive mineral surface area is estimated geometrically, both with regards to the total relative surface (WRT) as well as to the relative edge surface (WRE). WRT Biotite weathering rates are estimated as 10(-13)-10-(15) mol(biotite) m(biotite)(-2) s(-1). WRE Biotite weathering rates are on the order of 10(-13)-10(-14) mol(biotite) m(biotite)(-2) s(-1). Biotite weathering rates obtained by this study are in the order of one magnitude higher in comparison to other published field-based weathering rates. Using biotite as an indicator, we therefore suggest that glacially-derived material in the area of the Oberaar and Rhone glaciers is generally subjected to enhanced biogeochemical weathering, starting immediately after deposition in the proglacial zone and subsequently continuing for thousands of years after glacier retreat.
Resumo:
The family Acrochordiceratidae Arthaber, 1911 ranges in age from latest Spathian to the middle/late Anisian boundary, and it represents a major component of ammonoid faunas during that time. The middle Anisian genus Acrochordiceras Hyatt, 1877 is the most widespread taxon of the family and occurs abundantly worldwide within the low paleolatitude belt. However, there is a profusion of species names available for Acrochordiceras. This excessive diversity at the species level essentially results from the fact that sufficiently large samples were not available, thus leading to a typological approach to its taxonomy. Based on new extensive collections obtained from the Anisian (Middle Triassic) Fossil Hill Member (Star Peak Group, north-west Nevada) for which a high resolution biostratigraphic frame is available, the taxonomy and biostratigraphy of the genus Acrochordiceras Hyatt, 1877 is herein revised with respect to its intra-specific variation. Morphological and biometric studies (c. 550 bedrock-controlled specimens were measured) show that only one species occurs in each stratigraphic level. Continuous ranges of intra-specific variation of studied specimens enable us to synonymize Haydenites Diener, 1907, Silesiacrochordiceras Diener, 1916 and Epacrochordiceras Spath, 1934 with Acrochordiceras Hyatt, 1877. Three stratigraphically successive species are herein recognized in the low paleolatitude middle Anisian faunas from Nevada: A. hatschekii (Diener, 1907), A. hyatti Meek, 1877 and A. carolinae Mojsisovics, 1882. Moreover, an assessment of intra-specific variation of the adult size range does not support recognition of a dimorphic pair (Acrochordiceras and Epacrochordiceras) as previously suggested by other workers (Epacrochordiceras is the compressed and weakly ornamented end-member variant of Acrochordiceras). The successive middle Anisian species of Acrochordiceras form an anagenetic lineage characterized by increasing involution, adult size and intra-specific variation. This taxonomic revision based on new bedrock-controlled collections is thus an important prerequisite before studying the evolution of the group.
Resumo:
Rock slope instabilities are implicitly linked to the supply of sediment and debris recharging channels prone to debris flow. Hence, the incorporation of bedrock structure and terrain morphology can be relevant in the analysis of sediment budget and debris flow hazard assessment. Here, the mode of debris production of the Manival catchment (northern French Alps) is documented by the study of its morphostructural aspects extracted from high resolution DEM. Terrain implication in the process of debris supply is evaluated by: a) A systematic classification of the major morphological units based on the slope gradient that enables a spatial analysis of zones of debris production and deposition. b) A detailed structural analysis performed on DEM in order to identify potential unstable slopes. c) An analysis of the gullies orientation that informs in term of structural control of the sources zones. d) Localisation of high density joints sets that document about whether sources of continuous debris production are controlled by the structural setting of the catchment. These DEM-based indicators can be used as proxies for assessing the influences of the current topography and enable to quantify a degree of susceptibility to mass wasting and hillslope erosion activity. This present contribution suggests some directions for characterizing sediment flux dynamic in small alpine catchment.
Reorganization of a deeply incised drainage: role of deformation, sedimentation and groundwater flow
Resumo:
Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.
Resumo:
RESUME Dès le printemps 2004, la construction d'une 2ème ligne de métro est entreprise dans la ville de Lausanne en Suisse. En reliant Ouchy, au bord du lac Léman (alt. 373 m) à Epalinges (alt. 711 m), le nouveau métro "M2" traversera dès 2008 l'agglomération lausannoise du Sud au Nord sur une distance de 6 km. Depuis l'avant-projet, en 1999, une grande quantité de données géologiques a été récolté et de nombreux forages exécutés sur le site. Ceci nous a donné une occasion unique d'entreprendre une étude de microgravimétrique urbaine de détail. Le mode de creusement du tunnel dépend fortement des matériaux à excaver et il est classiquement du domaine du géologue, avec ses connaissances de la géologie régionale et de la stratigraphie des forages, de fournir à l'ingénieur un modèle géologique. Ce modèle indiquera dans ce cas l'épaisseur des terrains meubles qui recouvrent le soubassement rocheux. La représentativité spatiale d'une information très localisée, comme celle d'un forage, est d'autant plus compliquée que le détail recherché est petit. C'est à ce moment là que la prospection géophysique, plus spécialement gravimétrique, peut apporter des informations complémentaires déterminantes pour régionaliser les données ponctuelles des forages. La microgravimétrie en milieu urbain implique de corriger avec soin les perturbations gravifiques sur la mesure de la pesanteur dues aux effets de la topographie, des bâtiments et des caves afin d'isoler l'effet gravifique dû exclusivement à l'épaisseur du remplissage des terrains meubles. Tenant compte de l'intensité des corrections topographiques en milieu urbain, nous avons donné une grande importance aux sous-sols, leurs effets gravifiques pouvant atteindre l'ordre du dixième de mGal. Nous avons donc intégré ces corrections celle de topographie et traité les effets des bâtiments de manière indépendante. Nous avons inclus dans le modèle numérique de terrain (MNT) la chaussée et les sous-sols afin de construire un modèle numérique de terrain urbain. Nous utiliserons un nouvel acronyme « MNTU »pour décrire ce modèle. Nous proposons d'établir des cartes de corrections topographiques préalables, basées sur les données à disposition fournies par le cadastre en faisant des hypothèses sur la profondeur des sous-sols et la hauteur des bâtiments. Les deux zones de test choisies sont caractéristiques des différents types d'urbanisation présente à Lausanne et se révèlent par conséquent très intéressantes pour élaborer une méthodologie globale de la microgravimétrie urbaine. Le but était d'évaluer l'épaisseur du remplissage morainique sur un fond rocheux molassique se situant à une profondeur variable de quelques mètres à une trentaine de mètres et d'en établir une coupe dans l'axe du futur tracé du métro. Les résultats des modélisations se sont révélés très convaincants en détectant des zones qui diffèrent sensiblement du modèle géologique d'avant projet. Nous avons également démontré que l'application de cette méthode géophysique, non destructive, est à même de limiter le nombre de sondages mécaniques lors de l'avant-projet et du projet définitif, ce qui peut limiter à la fois les coûts et le dérangement engendré par ces travaux de surface. L'adaptabilité de la technique gravimétrique permet d'intervenir dans toutes les différentes phases d'un projet de génie civil comme celui de la construction d'un métro en souterrain. KURZFASSUNG Seit dem Frühling 2004 ist in der Stadt Lausanne (Schweiz) die neue U-Bahn "M2" in Konstruktion. Diese soll auf 6 km Länge die Lausanner Agglomeration von Süd nach Nord durchqueren. Die dem Projekt zu Grunde liegende technische Planung sieht vor, daß die Bahnlinie hauptsächlich in der Molasse angesiedelt sein wird. Seit dem Vorentwurf (1999) ist eine große Anzahl geologischer Angaben gesammelt worden. Daraus ergab sich die einmalige Gelegenheit, die Informationen aus den damit verbundenen zahlreichen Bohrungen zu einer detaillierten mikrogravimetrischen Studie der Stadt Lausanne zu erweitern und zu vervollständigen. Das Ziel bestand darin, die Mächtigkeit der die Molasseüberdeckenden Moräneablagerung abzuschätzen, um eine entsprechendes geologisches Profile entlang der künftigen Bahnlinie zu erstellen. Weiterhin sollte gezeigt werden, daß die Anwendung dieser nicht-invasiven geophysikalischen Methode es ermöglicht, die Anzahl der benötigten Bohrungen sowohl in der Pilotphase wie auch im endgültigen Projekt zu reduzieren, was zu wesentlichen finanziellen Einsparungen in der Ausführung des Werkes beitragen würde. Die beiden in dieser Studie bearbeiteten Testzonen befinden sich im Nordteil und im Stadtzentrum von Lausanne und sind durch eine unterschiedliche Urbanisierung charakterisiert. Das anstehende Gestein liegt in verschiedenen Tiefen: von einigen Metern bis zu etwa dreißig Metern. Diese Zonen weisen alle Schwierigkeiten einer urbanen Bebauung mit hoher Verkehrsdichte auf und waren daher massgebend bei der Ausarbeitung einer globalen mikrogravimetrischen Methodologie für die Stadt Lausanne. Die so entwickelte Technik ermöglicht, die störenden Auswirkungen der Topographie, der Gebäude, der Keller und der Öffentlichen Infrastrukturen sorgfältig zu korrigieren, um so die ausschließlich auf die Mächtigkeit des Lockergesteins zurückzuführenden Effekte zu isolieren. In Bezug auf die Intensität der Auswirkungen der topographischen Korrekturen im Stadtgebiet wurde den Untergeschossen eine besonders grosse Bedeutung zugemessen da die entsprechenden Schwerkrafteffekte eine Grösse von rund einem Zehntel mGal erreichen können. Wir schlagen deshalb vor, vorläufige Karten der topographischen Korrekturen zu erstellen. Diese Korrekturen basieren auf den uns vom Katasterplan gelieferten Daten und einigen Hypothesen bezüglich der Tiefe der Untergeschosse und der Höhe der Gebäude. Die Verfügbarkeit einer derartigen Karte vor der eigentlichen gravimetrischen Messkampagne würde uns erlauben, die Position der Meßstationen besser zu wählen. Wir sahen zudem, daß ein entsprechenden a priori Filter benutzt werden kann, wenn die Form und die Intensität der Anomalie offensichtlich dem entsprechenden Gebäude zugeordnet werden können. Diese Strategie muß jedoch mit Vorsicht angewandt werden, denn falls weitere Anomalien dazukommen, können bedeutende Verschiebungen durch Übèrlagerungen der Schwerewirkung verschiedener Strukturen entstehen. Die Ergebnisse der Modellierung haben sich als sehr überzeugend erwiesen, da sie im Voraus unbekannte sensible Zonen korrekt identifiziert haben. Die Anwendbarkeit der in dieser Arbeit entwickelten gravimetrischen Technik ermöglicht es, während allen Phasen eines Grossbauprojekts, wie zum Beispiel bei der Konstruktion einer unterirdischen U-Bahn, einzugreifen. ABSTRACT Since Spring of 2004 a new metro line has been under construction in the city of Lausanne in Switzerland. The new line, the M2, will be 6 km long and will traverse the city from south to north. The civil engineering project determined that the line would be located primarily in the Molasse. Since the preparatory project in 1999, a great quantity of geological data has been collected, and the many drillings made on the site have proved to be a unique opportunity to undertake a study of urban microgravimetry. The goal was to evaluate the thickness of the morainic filling over the molassic bedrock, and to establish a section along the axis of the future line. It then had to be shown that the application of this nondestructive geophysical method could reduce the number of mechanical surveys required both for a preparatory and a definitive project, which would lead to real savings in the realization of a civil engineering project. The two test zones chosen, one in the northern part of the city and one in the city centre, are characterised by various types of urbanisation. Bedrock is at a depth varying from a few metres to about thirty metres. These zones well exemplify the various difficulties encountered in an urban environment and are therefore very interesting for the development of an overall methodology of urban microgravimetry. Microgravimetry in an urban environment requires careful corrections for gravific disturbances due to the effects of topography, buildings, cellars, and the infrastructure of distribution networks, in order to isolate the gravific effect due exclusively to the thickness of loose soil filling. Bearing in mind the intensity of the topographic corrections in an urban environment, we gave particular importance to basements. Their gravific effects can reach the order of one tenth of one meal, and can influence above all the precision of the Bouguer anomaly. We propose to establish preliminary topographic correction charts based on data provided to us by the land register, by making assumptions on the depths of basements and the heights of buildings. Availability of this chart previous to a gravimetry campaign would enable us to choose optimum measuring sites. We have also seen that an a priori filter can be used when the form and the intensity of the anomaly correspond visually to the corresponding building. This strategy must be used with caution because if other anomalies are to be associated, important shifts can be generated by the superposition of the effects of different structures. The results of the model have proved to be very convincing in detecting previously unknown sensitive zones. The adaptability of the gravimetry technique allows for application in all phases of a civil engineering project such as the construction of an underground metro line. RIASSUNTO Dalla primavera 2004 una nuova linea metropolitana é in costruzione nella città di Losanna in Svizzera. La nuova metropolitana "M2" traverserà per la lunghezza di 6 km il centro urbano di Losanna da sud a nord. II progetto d'ingegneria civile prevedeva un tracciato situato essenzialmente nel fondo roccioso arenaceo terziario (molassa). Dalla redazione del progetto preliminare, avvenuta nel 1999, una grande quantità di dati geologici sono stati raccolti e sono stati eseguiti numerosi sondaggi. Questo sì é presentato come un'occasione unica per mettere a punto uno studio microgravimetrico in ambiente urbano con lo scopo di valutare lo spessore dei terreni sciolti di origine glaciale che ricoprono il fondo roccioso di molassa e di mettere in evidenza come l'applicazione di questo metodo geofisico non distruttivo possa limitare il numero di sondaggi meccanici nella fase di progetto preliminare ed esecutivo con conseguente reale risparmio economico nella realizzazione di una tale opera. Le due zone di test sono situate una nella zona nord e la seconda nel centro storico di Losanna e sono caratterizzate da stili architettonici differenti. II fondo roccioso é situato ad una profondità variabile da qualche metro ad una trentina. Queste due zone sembrano ben rappresentare tutte le difficoltà di un ambiente urbano e ben si prestano per elaborare una metodologia globale per la microgravimetria in ambiente urbano. L'applicazione di questa tecnica nell'ambiente suddetto implica la correzione attenta delle perturbazioni sulla misura dell'accelerazione gravitazionale, causate dalla topografia, gli edifici, le cantine e le infrastrutture dei sottoservizi, per ben isolare il segnale esclusivamente causato dallo spessore dei terreni sciolti. Tenuto conto, dell'intensità delle correzioni topografiche, abbiamo dato grande importanza alle cantine, poiché il loro effetto sulle misure può raggiungere il decimo di mGal. Proponiamo quindi di redigere una carta delle correzioni topografiche preliminare all'acquisizione, facendo delle ipotesi sulla profondità delle cantine e sull'altezza degli edifici, sulla base delle planimetrie catastali. L'analisi di questa carta permetterà di scegliere le posizioni più adatte per le stazioni gravimetriche. Abbiamo anche osservato che un filtro a priori, qualora la forma e l'intensità dell'anomalia fosse facilmente riconducibile in maniera visuale ad un edificio, possa essere efficace. Tuttavia questa strategia deve essere utilizzata con precauzione, poiché può introdurre uno scarto, qualora più anomalie, dovute a differenti strutture, si sovrappongano. I risultati delle modellizzazioni si sono rivelati convincenti, evidenziando zone sensibili non conosciute preventivamente. L'adattabilità della tecnica gravimetrica ha mostrato di poter intervenire in differenti fasi di un progetto di ingegneria civile, quale è quella di un'opera in sotterraneo.
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
This thesis is a compilation of projects to study sediment processes recharging debris flow channels. These works, conducted during my stay at the University of Lausanne, focus in the geological and morphological implications of torrent catchments to characterize debris supply, a fundamental element to predict debris flows. Other aspects of sediment dynamics are considered, e.g. the coupling headwaters - torrent, as well as the development of a modeling software that simulates sediment transfer in torrent systems. The sediment activity at Manival, an active torrent system of the northern French Alps, was investigated using terrestrial laser scanning and supplemented with geostructural investigations and a survey of sediment transferred in the main torrent. A full year of sediment flux could be observed, which coincided with two debris flows and several bedload transport events. This study revealed that both debris flows generated in the torrent and were preceded in time by recharge of material from the headwaters. Debris production occurred mostly during winter - early spring time and was caused by large slope failures. Sediment transfers were more puzzling, occurring almost exclusively in early spring subordinated to runoffconditions and in autumn during long rainfall. Intense rainstorms in summer did not affect debris storage that seems to rely on the stability of debris deposits. The morpho-geological implication in debris supply was evaluated using DEM and field surveys. A slope angle-based classification of topography could characterize the mode of debris production and transfer. A slope stability analysis derived from the structures in rock mass could assess susceptibility to failure. The modeled rockfall source areas included more than 97% of the recorded events and the sediment budgets appeared to be correlated to the density of potential slope failure. This work showed that the analysis of process-related terrain morphology and of susceptibility to slope failure document the sediment dynamics to quantitatively assess erosion zones leading to debris flow activity. The development of erosional landforms was evaluated by analyzing their geometry with the orientations of potential rock slope failure and with the direction of the maximum joint frequency. Structure in rock mass, but in particular wedge failure and the dominant discontinuities, appear as a first-order control of erosional mechanisms affecting bedrock- dominated catchment. They represent some weaknesses that are exploited primarily by mass wasting processes and erosion, promoting not only the initiation of rock couloirs and gullies, but also their propagation. Incorporating the geological control in geomorphic processes contributes to better understand the landscape evolution of active catchments. A sediment flux algorithm was implemented in a sediment cascade model that discretizes the torrent catchment in channel reaches and individual process-response systems. Each conceptual element includes in simple manner geomorphological and sediment flux information derived from GIS complemented with field mapping. This tool enables to simulate sediment transfers in channels considering evolving debris supply and conveyance, and helps reducing the uncertainty inherent to sediment budget prediction in torrent systems. Cette thèse est un recueil de projets d'études des processus de recharges sédimentaires des chenaux torrentiels. Ces travaux, réalisés lorsque j'étais employé à l'Université de Lausanne, se concentrent sur les implications géologiques et morphologiques des bassins dans l'apport de sédiments, élément fondamental dans la prédiction de laves torrentielles. D'autres aspects de dynamique sédimentaire ont été abordés, p. ex. le couplage torrent - bassin, ainsi qu'un modèle de simulation du transfert sédimentaire en milieu torrentiel. L'activité sédimentaire du Manival, un système torrentiel actif des Alpes françaises, a été étudiée par relevés au laser scanner terrestre et complétée par une étude géostructurale ainsi qu'un suivi du transfert en sédiments du torrent. Une année de flux sédimentaire a pu être observée, coïncidant avec deux laves torrentielles et plusieurs phénomènes de charriages. Cette étude a révélé que les laves s'étaient générées dans le torrent et étaient précédées par une recharge de débris depuis les versants. La production de débris s'est passée principalement en l'hiver - début du printemps, causée par de grandes ruptures de pentes. Le transfert était plus étrange, se produisant presque exclusivement au début du printemps subordonné aux conditions d'écoulement et en automne lors de longues pluies. Les orages d'été n'affectèrent guère les dépôts, qui semblent dépendre de leur stabilité. Les implications morpho-géologiques dans l'apport sédimentaire ont été évaluées à l'aide de MNT et études de terrain. Une classification de la topographie basée sur la pente a permis de charactériser le mode de production et transfert. Une analyse de stabilité de pente à partir des structures de roches a permis d'estimer la susceptibilité à la rupture. Les zones sources modélisées comprennent plus de 97% des chutes de blocs observées et les bilans sédimentaires sont corrélés à la densité de ruptures potentielles. Ce travail d'analyses des morphologies du terrain et de susceptibilité à la rupture documente la dynamique sédimentaire pour l'estimation quantitative des zones érosives induisant l'activité torrentielle. Le développement des formes d'érosion a été évalué par l'analyse de leur géométrie avec celle des ruptures potentielles et avec la direction de la fréquence maximale des joints. Les structures de roches, mais en particulier les dièdres et les discontinuités dominantes, semblent être très influents dans les mécanismes d'érosion affectant les bassins rocheux. Ils représentent des zones de faiblesse exploitées en priorité par les processus de démantèlement et d'érosion, encourageant l'initiation de ravines et couloirs, mais aussi leur propagation. L'incorporation du control géologique dans les processus de surface contribue à une meilleure compréhension de l'évolution topographique de bassins actifs. Un algorithme de flux sédimentaire a été implémenté dans un modèle en cascade, lequel divise le bassin en biefs et en systèmes individuels répondant aux processus. Chaque unité inclut de façon simple les informations géomorpologiques et celles du flux sédimentaire dérivées à partir de SIG et de cartographie de terrain. Cet outil permet la simulation des transferts de masse dans les chenaux, considérants la variabilité de l'apport et son transport, et aide à réduire l'incertitude liée à la prédiction de bilans sédimentaires torrentiels. Ce travail vise très humblement d'éclairer quelques aspects de la dynamique sédimentaire en milieu torrentiel.
Resumo:
Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.