176 resultados para automatic speech recognition

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The value of earmarks as an efficient means of personal identification is still subject to debate. It has been argued that the field is lacking a firm systematic and structured data basis to help practitioners to form their conclusions. Typically, there is a paucity of research guiding as to the selectivity of the features used in the comparison process between an earmark and reference earprints taken from an individual. This study proposes a system for the automatic comparison of earprints and earmarks, operating without any manual extraction of key-points or manual annotations. For each donor, a model is created using multiple reference prints, hence capturing the donor within source variability. For each comparison between a mark and a model, images are automatically aligned and a proximity score, based on a normalized 2D correlation coefficient, is calculated. Appropriate use of this score allows deriving a likelihood ratio that can be explored under known state of affairs (both in cases where it is known that the mark has been left by the donor that gave the model and conversely in cases when it is established that the mark originates from a different source). To assess the system performance, a first dataset containing 1229 donors elaborated during the FearID research project was used. Based on these data, for mark-to-print comparisons, the system performed with an equal error rate (EER) of 2.3% and about 88% of marks are found in the first 3 positions of a hitlist. When performing print-to-print transactions, results show an equal error rate of 0.5%. The system was then tested using real-case data obtained from police forces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of this research, three stages were stated for a program to increase the information extracted from ink evidence and maximise its usefulness to the criminal and civil justice system. These stages are (a) develop a standard methodology for analysing ink samples by high-performance thin layer chromatography (HPTLC) in reproducible way, when ink samples are analysed at different time, locations and by different examiners; (b) compare automatically and objectively ink samples; and (c) define and evaluate theoretical framework for the use of ink evidence in forensic context. This report focuses on the second of the three stages. Using the calibration and acquisition process described in the previous report, mathematical algorithms are proposed to automatically and objectively compare ink samples. The performances of these algorithms are systematically studied for various chemical and forensic conditions using standard performance tests commonly used in biometrics studies. The results show that different algorithms are best suited for different tasks. Finally, this report demonstrates how modern analytical and computer technology can be used in the field of ink examination and how tools developed and successfully applied in other fields of forensic science can help maximising its impact within the field of questioned documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Top-down contextual influences play a major part in speech understanding, especially in hearing-impaired patients with deteriorated auditory input. Those influences are most obvious in difficult listening situations, such as listening to sentences in noise but can also be observed at the word level under more favorable conditions, as in one of the most commonly used tasks in audiology, i.e., repeating isolated words in silence. This study aimed to explore the role of top-down contextual influences and their dependence on lexical factors and patient-specific factors using standard clinical linguistic material. Spondaic word perception was tested in 160 hearing-impaired patients aged 23-88 years with a four-frequency average pure-tone threshold ranging from 21 to 88 dB HL. Sixty spondaic words were randomly presented at a level adjusted to correspond to a speech perception score ranging between 40 and 70% of the performance intensity function obtained using monosyllabic words. Phoneme and whole-word recognition scores were used to calculate two context-influence indices (the j factor and the ratio of word scores to phonemic scores) and were correlated with linguistic factors, such as the phonological neighborhood density and several indices of word occurrence frequencies. Contextual influence was greater for spondaic words than in similar studies using monosyllabic words, with an overall j factor of 2.07 (SD = 0.5). For both indices, context use decreased with increasing hearing loss once the average hearing loss exceeded 55 dB HL. In right-handed patients, significantly greater context influence was observed for words presented in the right ears than for words presented in the left, especially in patients with many years of education. The correlations between raw word scores (and context influence indices) and word occurrence frequencies showed a significant age-dependent effect, with a stronger correlation between perception scores and word occurrence frequencies when the occurrence frequencies were based on the years corresponding to the patients' youth, showing a "historic" word frequency effect. This effect was still observed for patients with few years of formal education, but recent occurrence frequencies based on current word exposure had a stronger influence for those patients, especially for younger ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta<r/(1+r) where r is relatedness and delta is the fecundity loss relative to an outbred mating. This amounts to fitness losses up to one-fifth for a half-sib mating and one-third for a full-sib mating, which lie in the upper range of inbreeding depression values currently reported in natural populations. The observation of active inbreeding avoidance in a polygynous species thus suggests that inbreeding depression exceeds this threshold in the species under scrutiny or that inbred matings at least partly forfeit other mating opportunities for males. Our model also shows that female choosiness should decline rapidly with search costs, stemming from, for example, reproductive delays. Species under strong time constraints on reproduction should thus be tolerant of inbreeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long term goal of this research is to develop a program able to produce an automatic segmentation and categorization of textual sequences into discourse types. In this preliminary contribution, we present the construction of an algorithm which takes a segmented text as input and attempts to produce a categorization of sequences, such as narrative, argumentative, descriptive and so on. Also, this work aims at investigating a possible convergence between the typological approach developed in particular in the field of text and discourse analysis in French by Adam (2008) and Bronckart (1997) and unsupervised statistical learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.