7 resultados para ascorbate

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Acute exposure to high altitude stimulates free radical formation in lowlanders, yet whether this persists during chronic exposure in healthy, well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress (as determined by the presence of the biomarkers ascorbate radical [A •- ], via electron paramagnetic resonance spectroscopy, and nitrite [NO 2 2 ], via ozone-based chemiluminescence) was assessed in venous blood of 25 male highlanders in Bolivia living at 3,600 m with CMS (n 5 13, CMS 1 ) and without CMS (n 5 12, CMS 2 ). Twelve age- and activity-matched, healthy, male lowlanders were examined at sea level and during acute hypoxia. We also measured fl ow-mediated dilatation (FMD), arterial stiffness defined by augmentation index normalized for a heart rate of 75 beats/min (AIx-75), and carotid intima-media thickness (IMT). RESULTS: Compared with normoxic lowlanders, oxidative-nitrosative stress was moderately increased in the CMS 2 group ( P , .05), as indicated by elevated A •- (3,191 457 arbitrary units [AU] vs 2,640 445 AU) and lower NO 2 2 (206 55 nM vs 420 128 nM), whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS 1 group (A •- , 3,765 429 AU; NO 2 2 , 148 50 nM) compared with both the CMS 2 group and lowlanders ( P , .05). This was associated with systemic vascular dysfunction as indicated by lower ( P , .05 vs CMS 2 ) FMD (4.2% 0.7% vs 7.6% 1.7%) and increased AIx-75 (23% 8% vs 12% 7%) and carotid IMT (714 127 m M vs 588 94 m M). CONCLUSIONS: Healthy highlanders display a moderate, sustained elevation in oxidative-nitrosative stress that, unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some biochemical functions of vitamin C make it an essential component of parenteral nutrition (PN) and an important therapeutic supplement in other acute conditions. Ascorbic acid is a strong aqueous antioxidant and is a cofactor for several enzymes. The average body pool of vitamin C is 1.5 g, of which 3%-4% (40-60 mg) is used daily. Steady state is maintained with 60 mg/d in nonsmokers and 140 mg/d in smokers. Shocked surgical, trauma, and septic patients have a drastic reduction of circulating plasma ascorbate concentrations. These low concentrations require 3-g doses/d to restore normal plasma ascorbate concentrations, questioning the recommended PN dose of 100 mg/d. Determination of intravenous requirements is usually based on plasma concentrations, which are altered during the inflammatory response. There is no clear indicator of deficiency: serum or plasma ascorbate concentrations <0.3 mg/dL (20 micromol/L) indicates inadequate vitamin C status. On the basis of available pharmacokinetic data the 100 mg/d dose for patients receiving home PN and 200 mg/d for stable adult patients receiving PN are adequate, but requirements have been shown to be higher in perioperative, trauma, burn, and critically ill patients, paralleling oxidative stress. One recommendation cannot fit all categories of patients. Large vitamin C supplements may be considered in severe critical illness, major trauma, and burns because of increased requirements resulting from oxidative stress and wound healing. Future research should distinguish therapeutic use of high-dose ascorbic acid antioxidant therapy from nutritional PN requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4 degrees C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Plants often respond to pathogen or insect attack by inducing the synthesis of toxic compounds such as phytoalexins and glucosinolates (GS). The Arabidopsis mutant pad2-1 has reduced levels of the phytoalexin camalexin and is known for its increased susceptibility to fungal and bacterial pathogens. We found that pad2-1 is also more susceptible to the generalist insect Spodoptera littoralis but not to the specialist Pieris brassicae. The PAD2 gene encodes a gamma-glutamylcysteine synthetase that is involved in glutathione (GSH) synthesis, and consequently the pad2-1 mutant contains about 20% of the GSH found in wild-type plants. Lower GSH levels of pad2-1 were correlated with reduced accumulation of the two major indole and aliphatic GSs of Arabidopsis, indolyl-3-methyl-GS and 4-methylsulfinylbutyl-GS, in response to insect feeding. This effect was specific to GSH, was not complemented by treatment of pad2-1 with the strong reducing agent dithiothreitol, and was not observed with the ascorbate-deficient mutant vtc1-1. In contrast to the jasmonate-insensitive mutant coi1-1, expression of insect-regulated and GS biosynthesis genes was not affected in pad2-1. Our data suggest a crucial role for GSH in GS biosynthesis and insect resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using reaggregating rat brain cell cultures at two different stages of differentiation, we examined the biochemical effects of a 10-day treatment with nanomolar concentrations of methylmercuric chloride (monomethylmercury), in the presence or absence of promoters of hydroxyl radical formation (10 microM copper sulphate plus 100 microM ascorbate). A decrease in total protein content accounted for the general cytotoxicity of these compounds, whereas selective effects were assessed by determining the activities of cell type-specific enzymes. Methylmercury, up to 100 nM, as well as the copper ascorbate mixture, when applied separately, induced no general cytotoxicity, and only slight effects on neuronal parameters. However, when applying 100 nM methylmercury and the copper-ascorbate mixture together, a drastic decrease in neuronal and glial parameters was found. Under these conditions, the content of reactive oxygen species, assessed by 2',7'-dichlorofluorescin oxidation, increased greatly, while the activities of antioxidant enzymes decreased. In the presence of copper and ascorbate, differentiated cultures appeared more resistant than immature ones to low methylmercury concentrations (1-10 mM), but did undergo similar changes in both cell type-specific and antioxidant enzyme activities at 100 nM methylmercury. These results suggest that in prooxidant conditions low doses of mercury can become much more deleterious for the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Vitamin C is not only an essential nutrient involved in many anabolic pathways, but also an important player of the endogenous antioxidant defense. Low plasma levels are very common in critical care patients and may reflect severe deficiency states. RECENT FINDINGS: Vitamin C scavenges reactive oxygen species such as superoxide and peroxynitrite in plasma and cells (preventing damage to proteins, lipids and DNA), prevents occludin dephosphorylation and loosening of the tight junctions. Ascorbate improves microcirculatory flow impairment by inhibiting tumor-necrosis-factor-induced intracellular adhesion molecule expression, which triggers leukocyte stickiness and slugging. Clinical trials in sepsis, trauma and major burns testing high-dose vitamin C show clinical benefit. Restoration of normal plasma levels in inflammatory patients requires the administration of 3 g/day for several days, which is 30 times the daily recommended dose. SUMMARY: The recent research on the modulation of oxidative stress and endothelial protection offer interesting therapeutic perspectives, based on the biochemical evidence, with limited or even absent side-effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glyoxysomes are specialized peroxisomes present in various plant organs such as germinating cotyledons or senescing leaves. They are the site of beta-oxidation and of the glyoxylate cycle. These consecutive pathways are essential to the maintenance of gluconeogenesis initiated by the degradation of reserve or structural lipids. In contrast to mitochondrial beta-oxidation, which is prevalent in animal cells, glyoxysomal beta-oxidation and the glyoxylate cycle have no direct access to the mitochondrial respiratory chain because of the impermeability of the glyoxysomal membrane to the reduced cofactors. The necessity of NAD(+) regeneration can conceivably be fulfilled by membrane redox chains and/or by transmembrane shuttles. Experimental evidence based on the active metabolic roles of higher plant glyoxysomes and yeast peroxisomes suggests the coexistence of two mechanisms, namely a reductase/peroxidase membrane redox chain and a malate/aspartate shuttle susceptible to transfer electrons to the mitochondrial ATP generating system. Such a model interconnects beta-oxidation, the glyoxylate cycle, the respiratory chain and gluconeogenesis in such a way that glyoxysomal malate dehydrogenase is an essential and exclusive component of beta-oxidation (NAD(+) regeneration). Consequently, the classical view of the glyoxylate cycle is superseded by a tentative reactional scheme deprived of cyclic character.