5 resultados para arts and creative industries
em Université de Lausanne, Switzerland
Resumo:
Anthropogenic emissions of metals from sources such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of heavy metals in soils in the vicinity of the industrial complex of Port Kembla, NSW, Australia, which comprises a copper smelter, steelworks and associated industries. Soil samples (n=25) were collected at the depths of 0-5 and 5-20 cm, air dried and sieved to < 2 mm. Aqua regia extractable amounts of As, Cr, Cu, Ph and Zn were analysed by inductively coupled plasma mass spectrometry (lCP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Outliers were identified from background levels by statistical methods. Mean background levels at a depth of 0-5 cm were estimated at 3.2 mg/kg As, 12 mg/kg Cr, 49 mg/kg Cu, 20 mg/kg Ph and 42 mg/kg Zn. Outliers for elevated As and Cu values were mainly present within 4 km from the Port Kembla industrial complex, but high Ph at two sites and high Zn concentrations were found at six sites up to 23 km from Port Kembla. Chromium concentrations were not anomalous close to the industrial complex. There was no significant difference of metal concentrations at depths of 0-5 and 5-20 cm, except for Ph and Zn. Copper and As concentrations in the soils are probably related to the concentrations in the parent rock. From this investigation, the extent of the contamination emanating from the Port Kembla industrial complex is limited to 1-13 km, but most likely <4 km, depending on the element; the contamination at the greater distance may not originate from the industrial complex. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In 2008, a Swiss Academies of Arts and Sciences working group chaired by Professor Emilio Bossi issued a "Memorandum on scientific integrity and the handling of misconduct in the scientific context", together with a paper setting out principles and procedures concerning integrity in scientific research. In the Memorandum, unjustified claims of authorship in scientific publications are referred to as a form of scientific misconduct - a view widely shared in other countries. In the Principles and Procedures, the main criteria for legitimate authorship are specified, as well as the associated responsibilities. It is in fact not uncommon for disputes about authorship to arise with regard to publications in fields where research is generally conducted by teams rather than individuals. Such disputes may concern not only the question who is or is not to be listed as an author but also, frequently, the precise sequence of names, if the list is to reflect the various authors' roles and contributions. Subjective assessments of the contributions made by the individual members of a research group may differ substantially. As scientific collaboration - often across national boundaries - is now increasingly common, ensuring appropriate recognition of all parties is a complex matter and, where disagreements arise, it may not be easy to reach a consensus. In addition, customs have changed over the past few decades; for example, the practice of granting "honorary" authorship to an eminent researcher - formerly not unusual - is no longer considered acceptable. It should be borne in mind that the publications list has become by far the most important indicator of a researcher's scientific performance; for this reason, appropriate authorship credit has become a decisive factor in the careers of young researchers, and it needs to be managed and protected accordingly. At the international and national level, certain practices have therefore developed concerning the listing of authors and the obligations of authorship. The Scientific Integrity Committee of the Swiss Academies of Arts and Sciences has collated the relevant principles and regulations and formulated recommendations for authorship in scientific publications. These should help to prevent authorship disputes and offer guidance in the event of conflicts.
Resumo:
[Summary] 2. Roles of quality control in the pharmaceutical and biopharmaceutical industries. - 2.1. Pharmaceutical industry. - 2.2. Biopharmaceutical industry. - 2.3. Policy and regulatory. - 2.3.1. The US Food and Drug Administration (FDA). - 2.3.2. The European Medicine Agency (EMEA). - 2.3.3. The Japanese Ministry of Work, Labor and Welfare (MHLW). - 2.3.4. The Swiss Agency for Therapeutic Products (Swissmedic). - 2.3.5. The International Conference on Harmonization (ICH). - - 3. Types of testing. - 3.1. Microbiological purity tests. - 3.2. Physiochemical tests. - 3.3. Critical to quality steps. - 3.3.1. API starting materials and excipients. - 3.3.2. Intermediates. - 3.3.3. APIs (drug substances) and final drug product. - 3.3.4. Primary and secondary packaging materials fro drug products. - - 4. Manufacturing cost and quality control. - 4.1.1. Pharmaceutical manufacturing cost breakdown. - 4.1.2. Biopharmaceutical manufacturing cost breakdown. - 4.2. Batch failure / rejection / rework / recalls. - - 5. Future trends in the quality control of pharmaceuticals and biopharmaceuticals. - 5.1. Rapid and real time testing. - 5.1.1. Physio-chemicals testing. - 5.1.2. Rapid microbiology methods