66 resultados para analytical techniques
em Université de Lausanne, Switzerland
Resumo:
Forensic scientists have long detected the presence of drugs and their metabolites in biological materials using body fluids such as urine, blood and/or other biological liquids or tissues. For doping analysis, only urine has so far been collected. In recent years, remarkable advances in sensitive analytical techniques have encouraged the analysis of drugs in unconventional biological samples such as hair, saliva and sweat. These samples are easily collected, although drug levels are often lower than the corresponding levels in urine or blood. This chapter reviews recent studies in the detection of doping agents in hair, saliva and sweat. Sampling, analytical procedures and interpretation of the results are discussed in comparison with those obtained from urine and blood samples.
Resumo:
This review presents the evolution of steroid analytical techniques, including gas chromatography coupled to mass spectrometry (GC-MS), immunoassay (IA) and targeted liquid chromatography coupled to mass spectrometry (LC-MS), and it evaluates the potential of extended steroid profiles by a metabolomics-based approach, namely steroidomics. Steroids regulate essential biological functions including growth and reproduction, and perturbations of the steroid homeostasis can generate serious physiological issues; therefore, specific and sensitive methods have been developed to measure steroid concentrations. GC-MS measuring several steroids simultaneously was considered the first historical standard method for analysis. Steroids were then quantified by immunoassay, allowing a higher throughput; however, major drawbacks included the measurement of a single compound instead of a panel and cross-reactivity reactions. Targeted LC-MS methods with selected reaction monitoring (SRM) were then introduced for quantifying a small steroid subset without the problems of cross-reactivity. The next step was the integration of metabolomic approaches in the context of steroid analyses. As metabolomics tends to identify and quantify all the metabolites (i.e., the metabolome) in a specific system, appropriate strategies were proposed for discovering new biomarkers. Steroidomics, defined as the untargeted analysis of the steroid content in a sample, was implemented in several fields, including doping analysis, clinical studies, in vivo or in vitro toxicology assays, and more. This review discusses the current analytical methods for assessing steroid changes and compares them to steroidomics. Steroids, their pathways, their implications in diseases and the biological matrices in which they are analysed will first be described. Then, the different analytical strategies will be presented with a focus on their ability to obtain relevant information on the steroid pattern. The future technical requirements for improving steroid analysis will also be presented.
Resumo:
This dissertation focuses on the practice of regulatory governance, throughout the study of the functioning of formally independent regulatory agencies (IRAs), with special attention to their de facto independence. The research goals are grounded on a "neo-positivist" (or "reconstructed positivist") position (Hawkesworth 1992; Radaelli 2000b; Sabatier 2000). This perspective starts from the ontological assumption that even if subjective perceptions are constitutive elements of political phenomena, a real world exists beyond any social construction and can, however imperfectly, become the object of scientific inquiry. Epistemologically, it follows that hypothetical-deductive theories with explanatory aims can be tested by employing a proper methodology and set of analytical techniques. It is thus possible to make scientific inferences and general conclusions to a certain extent, according to a Bayesian conception of knowledge, in order to update the prior scientific beliefs in the truth of the related hypotheses (Howson 1998), while acknowledging the fact that the conditions of truth are at least partially subjective and historically determined (Foucault 1988; Kuhn 1970). At the same time, a sceptical position is adopted towards the supposed disjunction between facts and values and the possibility of discovering abstract universal laws in social science. It has been observed that the current version of capitalism corresponds to the golden age of regulation, and that since the 1980s no government activity in OECD countries has grown faster than regulatory functions (Jacobs 1999). Following an apparent paradox, the ongoing dynamics of liberalisation, privatisation, decartelisation, internationalisation, and regional integration hardly led to the crumbling of the state, but instead promoted a wave of regulatory growth in the face of new risks and new opportunities (Vogel 1996). Accordingly, a new order of regulatory capitalism is rising, implying a new division of labour between state and society and entailing the expansion and intensification of regulation (Levi-Faur 2005). The previous order, relying on public ownership and public intervention and/or on sectoral self-regulation by private actors, is being replaced by a more formalised, expert-based, open, and independently regulated model of governance. Independent regulation agencies (IRAs), that is, formally independent administrative agencies with regulatory powers that benefit from public authority delegated from political decision makers, represent the main institutional feature of regulatory governance (Gilardi 2008). IRAs constitute a relatively new technology of regulation in western Europe, at least for certain domains, but they are increasingly widespread across countries and sectors. For instance, independent regulators have been set up for regulating very diverse issues, such as general competition, banking and finance, telecommunications, civil aviation, railway services, food safety, the pharmaceutical industry, electricity, environmental protection, and personal data privacy. Two attributes of IRAs deserve a special mention. On the one hand, they are formally separated from democratic institutions and elected politicians, thus raising normative and empirical concerns about their accountability and legitimacy. On the other hand, some hard questions about their role as political actors are still unaddressed, though, together with regulatory competencies, IRAs often accumulate executive, (quasi-)legislative, and adjudicatory functions, as well as about their performance.
Resumo:
This article describes the composition of fingermark residue as being a complex system with numerous compounds coming from different sources and evolving over time from the initial composition (corresponding to the composition right after deposition) to the aged composition (corresponding to the evolution of the initial composition over time). This complex system will additionally vary due to effects of numerous influence factors grouped in five different classes: the donor characteristics, the deposition conditions, the substrate nature, the environmental conditions and the applied enhancement techniques. The initial and aged compositions as well as the influence factors are thus considered in this article to provide a qualitative and quantitative review of all compounds identified in fingermark residue up to now. The analytical techniques used to obtain these data are also enumerated. This review highlights the fact that despite the numerous analytical processes that have already been proposed and tested to elucidate fingermark composition, advanced knowledge is still missing. Thus, there is a real need to conduct future research on the composition of fingermark residue, focusing particularly on quantitative measurements, aging kinetics and effects of influence factors. The results of future research are particularly important for advances in fingermark enhancement and dating technique developments.
Resumo:
Obesity is of global health concern. There are well-described inverse relationships between female pubertal timing and obesity. Recent genome-wide association studies of age at menarche identified several obesity-related variants. Using data from the ReproGen Consortium, we employed meta-analytical techniques to estimate the associations of 95 a priori and recently identified obesity-related (body mass index (weight (kg)/height (m)(2)), waist circumference, and waist:hip ratio) single-nucleotide polymorphisms (SNPs) with age at menarche in 92,116 women of European descent from 38 studies (1970-2010), in order to estimate associations between genetic variants associated with central or overall adiposity and pubertal timing in girls. Investigators in each study performed a separate analysis of associations between the selected SNPs and age at menarche (ages 9-17 years) using linear regression models and adjusting for birth year, site (as appropriate), and population stratification. Heterogeneity of effect-measure estimates was investigated using meta-regression. Six novel associations of body mass index loci with age at menarche were identified, and 11 adiposity loci previously reported to be associated with age at menarche were confirmed, but none of the central adiposity variants individually showed significant associations. These findings suggest complex genetic relationships between menarche and overall obesity, and to a lesser extent central obesity, in normal processes of growth and development.
Resumo:
Statistics of causes of death remain an important source of epidemiological data for the evaluation of various medical and health problems. The improvement of analytical techniques and, above all, the transformation of demographic and morbid structures of populations have prompted researchers in the field to give more importance to the quality of death certificates. After describing the data collection system presently used in Switzerland, the paper discusses various indirect estimations of the quality of Swiss data and reviews the corresponding international literature.
Resumo:
This article describes the composition of fingermark residue as being a complex system with numerous compounds coming from different sources and evolving over time from the initial composition (corresponding to the composition right after deposition) to the aged composition (corresponding to the evolution of the initial composition over time). This complex system will additionally vary due to effects of numerous influence factors grouped in five different classes: the donor characteristics, the deposition conditions, the substrate nature, the environmental conditions and the applied enhancement techniques. The initial and aged compositions as well as the influence factors are thus considered in this article to provide a qualitative and quantitative review of all compounds identified in fingermark residue up to now. The analytical techniques used to obtain these data are also enumerated. This review highlights the fact that despite the numerous analytical processes that have already been proposed and tested to elucidate fingermark composition, advanced knowledge is still missing. Thus, there is a real need to conduct future research on the composition of fingermark residue, focusing particularly on quantitative measurements, aging kinetics and effects of influence factors. The results of future research are particularly important for advances in fingermark enhancement and dating technique developments.
Resumo:
We present a compact portable biosensor to measure arsenic As(III) concentrations in water using Escherichia coli bioreporter cells. Escherichia coli expresses green fluorescent protein in a linearly dependent manner as a function of the arsenic concentration (between 0 and 100 μg/L). The device accommodates a small polydimethylsiloxane microfluidic chip that holds the agarose-encapsulated bacteria, and a complete optical illumination/collection/detection system for automated quantitative fluorescence measurements. The device is capable of sampling water autonomously, controlling the whole measurement, storing and transmitting data over GSM networks. We demonstrate highly reproducible measurements of arsenic in drinking water at 10 and 50 μg/L within 100 and 80 min, respectively.
Resumo:
The WHO classification of breast tumors distinguishes, besides invasive breast cancer 'of no special type' (former invasive ductal carcinoma, representing 60-70% of all breast cancers), 30 special types, of which invasive lobular carcinoma (ILC) is the most common (5-15%). We review the literature on (i) the specificity and heterogeneity of ILC biology as documented by various analytical techniques, including the results of molecular testing for risk of recurrence; (ii) the impact of lobular histology on prediction of prognosis and effect of systemic therapies in patients. Though it is generally admitted that ILC has a better prognosis than IDC, is endocrine responsive, and responds poorly to chemotherapy, currently available data do not unanimously support these assumptions. This review demonstrates some lack of specific data and a need for improving clinical research design to allow oncologists to make informed systemic therapy decisions in patients with ILC. Importantly, future studies should compare various endpoints in ILC breast cancer patients among the group of hormonosensitive breast cancer.
Resumo:
This study represents the most extensive analysis of batch-to-batch variations in spray paint samples to date. The survey was performed as a collaborative project of the ENFSI (European Network of Forensic Science Institutes) Paint and Glass Working Group (EPG) and involved 11 laboratories. Several studies have already shown that paint samples of similar color but from different manufacturers can usually be differentiated using an appropriate analytical sequence. The discrimination of paints from the same manufacturer and color (batch-to-batch variations) is of great interest and these data are seldom found in the literature. This survey concerns the analysis of batches from different color groups (white, papaya (special shade of orange), red and black) with a wide range of analytical techniques and leads to the following conclusions. Colored batch samples are more likely to be differentiated since their pigment composition is more complex (pigment mixtures, added pigments) and therefore subject to variations. These variations may occur during the paint production but may also occur when checking the paint shade in quality control processes. For these samples, techniques aimed at color/pigment(s) characterization (optical microscopy, microspectrophotometry (MSP), Raman spectroscopy) provide better discrimination than techniques aimed at the organic (binder) or inorganic composition (fourier transform infrared spectroscopy (FTIR) or elemental analysis (SEM - scanning electron microscopy and XRF - X-ray fluorescence)). White samples contain mainly titanium dioxide as a pigment and the main differentiation is based on the binder composition (Csingle bondH stretches) detected either by FTIR or Raman. The inorganic composition (elemental analysis) also provides some discrimination. Black samples contain mainly carbon black as a pigment and are problematic with most of the spectroscopic techniques. In this case, pyrolysis-GC/MS represents the best technique to detect differences. Globally, Py-GC/MS may show a high potential of discrimination on all samples but the results are highly dependent on the specific instrumental conditions used. Finally, the discrimination of samples when data was interpreted visually as compared to statistically using principal component analysis (PCA) yielded very similar results. PCA increases sensitivity and could perform better on specific samples, but one first has to ensure that all non-informative variation (baseline deviation) is eliminated by applying correct pre-treatments. Statistical treatments can be used on a large data set and, when combined with an expert's opinion, will provide more objective criteria for decision making.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).
Resumo:
Drug development has improved over recent decades, with refinements in analytical techniques, population pharmacokinetic-pharmacodynamic (PK-PD) modelling and simulation, and new biomarkers of efficacy and tolerability. Yet this progress has not yielded improvements in individualization of treatment and monitoring, owing to various obstacles: monitoring is complex and demanding, many monitoring procedures have been instituted without critical assessment of the underlying evidence and rationale, controlled clinical trials are sparse, monitoring procedures are poorly validated and both drug manufacturers and regulatory authorities take insufficient account of the importance of monitoring. Drug concentration and effect data should be increasingly collected, analyzed, aggregated and disseminated in forms suitable for prescribers, along with efficient monitoring tools and evidence-based recommendations regarding their best use. PK-PD observations should be collected for both novel and established critical drugs and applied to observational data, in order to establish whether monitoring would be suitable. Methods for aggregating PK-PD data in systematic reviews should be devised. Observational and intervention studies to evaluate monitoring procedures are needed. Miniaturized monitoring tests for delivery at the point of care should be developed and harnessed to closed-loop regulated drug delivery systems. Intelligent devices would enable unprecedented precision in the application of critical treatments, i.e. those with life-saving efficacy, narrow therapeutic margins and high interpatient variability. Pharmaceutical companies, regulatory agencies and academic clinical pharmacologists share the responsibility of leading such developments, in order to ensure that patients obtain the greatest benefit and suffer the least harm from their medicines.
Resumo:
We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.