35 resultados para allocation of prizes
em Université de Lausanne, Switzerland
Resumo:
This research examines the impacts of the Swiss reform of the allocation of tasks which was accepted in 2004 and implemented in 2008 to "re-assign" the responsibilities between the federal government and the cantons. The public tasks were redistributed, according to the leading and fundamental principle of subsidiarity. Seven tasks came under exclusive federal responsibility; ten came under the control of the cantons; and twenty-two "common tasks" were allocated to both the Confederation and the cantons. For these common tasks it wasn't possible to separate the management and the implementation. In order to deal with nineteen of them, the reform introduced the conventions-programs (CPs), which are public law contracts signed by the Confederation with each canton. These CPs are generally valid for periods of four years (2008-11, 2012-15 and 2016-19, respectively). The third period is currently being prepared. By using the principal-agent theory I examine how contracts can improve political relations between a principal (Confederation) and an agent (canton). I also provide a first qualitative analysis by examining the impacts of these contracts on the vertical cooperation and on the implication of different actors by focusing my study on five CPs - protection of cultural heritage and conservation of historic monuments, encouragement of the integration of foreigners, economic development, protection against noise and protection of the nature and landscape - applied in five cantons, which represents twenty-five cases studies.
Resumo:
The primary function of secondary plant metabolites is thought to be defence against herbivores. The frequent occurrence of these same noxious compounds in floral nectar, which functions primarily to attract pollinators, has been seen as paradoxical. Although these compounds may have an adaptive purpose in nectar, they may also occur as a nonadaptive consequence of chemical defence in other plant parts. If nectar chemistry reflects physiological constraints or passive leakage from other tissues, we expect that the identity and relative concentration of nectar cardenolides to be correlated with those of other plant parts; in contrast, discordant distributions of compounds in nectar and other tissues may suggest adaptive roles in nectar. We compared the concentrations and identities of cardenolides in the nectar, leaves and flowers of 12 species from a monophyletic clade of Asclepias. To measure putative toxicity of nectar cardenolides, we then examined the effects of a standard cardenolide (digoxin) on the behaviour of bumblebees, a common generalist pollinator of Asclepias. We found that the average cardenolide concentrations in nectar, leaves and flowers of the 12 Asclepias species were positively correlated as predicted by nonadaptive hypotheses. However, significant differences in the identities and concentrations of individual cardenolides between nectar and leaves suggest that the production or allocation of cardenolides may be independently regulated at each plant part. In addition, cardenolide concentrations in leaves and nectar exhibited no phylogenetic signal. Surprisingly, bumblebees did not demonstrate an aversion to digoxin-rich nectar, which may indicate that nectar cardenolides have little effect on pollination. Although the idea that discordant patterns of secondary metabolites across tissue types may signal adaptive functions is attractive, there is evidence to suggest constraint contributes to nectar secondary chemistry. Further work testing the ecological impacts of such patterns will be critical in determining the functional significance of nectar cardenolides
Resumo:
Summary : Division of labour is one of the most fascinating aspects of social insects. The efficient allocation of individuals to a multitude of different tasks requires a dynamic adjustment in response to the demands of a changing environment. A considerable number of theoretical models have focussed on identifying the mechanisms allowing colonies to perform efficient task allocation. The large majority of these models are built on the observation that individuals in a colony vary in their propensity (response threshold) to perform different tasks. Since individuals with a low threshold for a given task stimulus are more likely to perform that task than individuals with a high threshold, infra-colony variation in individual thresholds results in colony division of labour. These theoretical models suggest that variation in individual thresholds is affected by the within-colony genetic diversity. However, the models have not considered the genetic architecture underlying the individual response thresholds. This is important because a better understanding of division of labour requires determining how genotypic variation relates to differences in infra-colony response threshold distributions. In this thesis, we investigated the combined influence on task allocation efficiency of both, the within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes underlying the response thresholds. We used an agent-based simulator to model a situation where workers in a colony had to perform either a regulatory task (where the amount of a given food item in the colony had to be maintained within predefined bounds) or a foraging task (where the quantity of a second type of food item collected had to be the highest possible). The performance of colonies was a function of workers being able to perform both tasks efficiently. To study the effect of within-colony genetic diversity, we compared the performance of colonies with queens mated with varying number of males. On the other hand, the influence of genetic architecture was investigated by varying the number of loci underlying the response threshold of the foraging and regulatory tasks. Artificial evolution was used to evolve the allelic values underlying the tasks thresholds. The results revealed that multiple matings always translated into higher colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or few genes for the foraging task's threshold. By contrast, higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes determining the threshold for the regulatory task only had a minor but incremental effect on colony performance. Overall, our numerical experiments indicate the importance of considering the effects of queen mating frequency, genetic architecture underlying task thresholds and the type of task performed when investigating the factors regulating the efficiency of division of labour in social insects. In this thesis we also investigate the task allocation efficiency of response threshold models and compare them with neural networks. While response threshold models are widely used amongst theoretical biologists interested in division of labour in social insects, our simulation reveals that they perform poorly compared to a neural network model. A major shortcoming of response thresholds is that they fail at one of the most crucial requirement of division of labour, the ability of individuals in a colony to efficiently switch between tasks under varying environmental conditions. Moreover, the intrinsic properties of the threshold models are that they lead to a large proportion of idle workers. Our results highlight these limitations of the response threshold models and provide an adequate substitute. Altogether, the experiments presented in this thesis provide novel contributions to the understanding of how division of labour in social insects is influenced by queen mating frequency and genetic architecture underlying worker task thresholds. Moreover, the thesis also provides a novel model of the mechanisms underlying worker task allocation that maybe more generally applicable than the widely used response threshold models. Resumé : La répartition du travail est l'un des aspects les plus fascinants des insectes vivant en société. Une allocation efficace de la multitude de différentes tâches entre individus demande un ajustement dynamique afin de répondre aux exigences d'un environnement en constant changement. Un nombre considérable de modèles théoriques se sont attachés à identifier les mécanismes permettant aux colonies d'effectuer une allocation efficace des tâches. La grande majorité des ces modèles sont basés sur le constat que les individus d'une même colonie diffèrent dans leur propension (inclination à répondre) à effectuer différentes tâches. Etant donné que les individus possédant un faible seuil de réponse à un stimulus associé à une tâche donnée sont plus disposés à effectuer cette dernière que les individus possédant un seuil élevé, les différences de seuils parmi les individus vivant au sein d'une même colonie mènent à une certaine répartition du travail. Ces modèles théoriques suggèrent que la variation des seuils des individus est affectée par la diversité génétique propre à la colonie. Cependant, ces modèles ne considèrent pas la structure génétique qui est à la base des seuils de réponse individuels. Ceci est très important car une meilleure compréhension de la répartition du travail requière de déterminer de quelle manière les variations génotypiques sont associées aux différentes distributions de seuils de réponse à l'intérieur d'une même colonie. Dans le cadre de cette thèse, nous étudions l'influence combinée de la variabilité génétique d'une colonie (qui prend son origine dans la variation du nombre d'accouplements des reines) avec le nombre de gènes supportant les seuils de réponse, vis-à-vis de la performance de l'allocation des tâches. Nous avons utilisé un simulateur basé sur des agents pour modéliser une situation où les travailleurs d'une colonie devaient accomplir une tâche de régulation (1a quantité d'une nourriture donnée doit être maintenue à l'intérieur d'un certain intervalle) ou une tâche de recherche de nourriture (la quantité d'une certaine nourriture doit être accumulée autant que possible). Dans ce contexte, 'efficacité des colonies tient en partie des travailleurs qui sont capable d'effectuer les deux tâches de manière efficace. Pour étudier l'effet de la diversité génétique d'une colonie, nous comparons l'efficacité des colonies possédant des reines qui s'accouplent avec un nombre variant de mâles. D'autre part, l'influence de la structure génétique a été étudiée en variant le nombre de loci à la base du seuil de réponse des deux tâches de régulation et de recherche de nourriture. Une évolution artificielle a été réalisée pour évoluer les valeurs alléliques qui sont à l'origine de ces seuils de réponse. Les résultats ont révélé que de nombreux accouplements se traduisaient toujours en une plus grande performance de la colonie, quelque soit le nombre de loci encodant les seuils des tâches de régulation et de recherche de nourriture. Cependant, les effets bénéfiques d'accouplements additionnels ont été particulièrement important lorsque la structure génétique des reines comprenait un ou quelques gènes pour le seuil de réponse pour la tâche de recherche de nourriture. D'autre part, un nombre plus élevé de gènes encodant la tâche de recherche de nourriture a diminué la performance de la colonie avec un effet nuisible d'autant plus fort lorsque les reines s'accouplent avec plusieurs mâles. Finalement, le nombre de gènes déterminant le seuil pour la tâche de régulation eu seulement un effet mineur mais incrémental sur la performance de la colonie. Pour conclure, nos expériences numériques révèlent l'importance de considérer les effets associés à la fréquence d'accouplement des reines, à la structure génétique qui est à l'origine des seuils de réponse pour les tâches ainsi qu'au type de tâche effectué au moment d'étudier les facteurs qui régulent l'efficacité de la répartition du travail chez les insectes vivant en communauté. Dans cette thèse, nous étudions l'efficacité de l'allocation des tâches des modèles prenant en compte des seuils de réponses, et les comparons à des réseaux de neurones. Alors que les modèles basés sur des seuils de réponse sont couramment utilisés parmi les biologistes intéressés par la répartition des tâches chez les insectes vivant en société, notre simulation montre qu'ils se révèlent peu efficace comparé à un modèle faisant usage de réseaux de neurones. Un point faible majeur des seuils de réponse est qu'ils échouent sur un point crucial nécessaire à la répartition des tâches, la capacité des individus d'une colonie à commuter efficacement entre des tâches soumises à des conditions environnementales changeantes. De plus, les propriétés intrinsèques des modèles basés sur l'utilisation de seuils conduisent à de larges populations de travailleurs inactifs. Nos résultats mettent en évidence les limites de ces modèles basés sur l'utilisation de seuils et fournissent un substitut adéquat. Ensemble, les expériences présentées dans cette thèse fournissent de nouvelles contributions pour comprendre comment la répartition du travail chez les insectes vivant en société est influencée par la fréquence d'accouplements des reines ainsi que par la structure génétique qui est à l'origine, pour un travailleur, du seuil de réponse pour une tâche. De plus, cette thèse fournit également un nouveau modèle décrivant les mécanismes qui sont à l'origine de l'allocation des tâches entre travailleurs, mécanismes qui peuvent être appliqué de manière plus générale que ceux couramment utilisés et basés sur des seuils de réponse.
Resumo:
Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. In observational epidemiology, this refers to the use of genetic variants to estimate a causal effect between a modifiable risk factor and an outcome of interest. In this review, we recall the principles of a "Mendelian randomization" approach in observational epidemiology, which is based on the technique of instrumental variables; we provide simulations and an example based on real data to demonstrate its implications; we present the results of a systematic search on original articles having used this approach; and we discuss some limitations of this approach in view of what has been found so far.
Resumo:
Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.
Resumo:
OBJECTIVE: To assess the post-ischemic skin blood flow response after withdrawal of antihypertensive therapy in hypertensive patients with normal blood pressure during treatment. DESIGN AND METHODS: Twenty hypertensive patients (group A) with a normal clinic blood pressure (<140/ 90 mmHg) receiving antihypertensive treatment (any monotherapy; one pill per day for at least 6 months) had their treatment discontinued. Before medication withdrawal and 2, 4, 12 and 24 weeks thereafter, the following measurements were made: clinic blood pressure, home blood pressure (three times per week, morning and evening) and skin blood flow response to a 5 min forearm arterial occlusion (using laser Doppler flowmetry). The patients were asked to perform an ambulatory blood pressure recording at any time if home blood pressure was > or =160/95 mmHg on two consecutive days, and treatment was initiated again, after determination of the skin hyperemic response, if daytime ambulatory blood pressure was > or =140/90 mmHg. The same studies were performed in 20 additional hypertensive individuals in whom antihypertensive treatment was not withdrawn (group B). The allocation of patients to groups A and B was random. RESULTS: The data fom 18 patients in group A who adhered strictly to the procedure were available for analysis. Seven of them had to start treatment again within the first 4 weeks of follow-up; four additional patients started treatment again during the next 8 weeks (group A1). The seven other patients remained untreated (group A2). The skin hyperemic response decreased significantly in patients in group A1 and returned to baseline values at the end of the study, when there were again receiving antihypertensive treatment. In patients in group A2 a significant attenuation of the hyperemic response was also observed. This impaired response was present even at the end of the 6 month follow-up, at which time the patients were still untreated but exhibited a significantly greater blood pressure than before drug discontinuation. The hyperemic response of patients who did not stop treatment (group B) did not change during the course of the study. CONCLUSIONS: Our findings show a decrease in the postischemic skin blood flow response after withdrawal of antihypertensive treatment in hypertensive patients. This impaired response may be due to the development of endothelial dysfunction, vascular remodeling, or both, and might contribute to the return of blood pressure to hypertensive values after withdrawal of antihypertensive therapy.
Resumo:
The age-dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life-history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: "infants" using IL or oblique SL, "juveniles" implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.
Resumo:
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h(2)=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.
Resumo:
Deciding whether two fingerprint marks originate from the same source requires examination and comparison of their features. Many cognitive factors play a major role in such information processing. In this paper we examined the consistency (both between- and within-experts) in the analysis of latent marks, and whether the presence of a 'target' comparison print affects this analysis. Our findings showed that the context of a comparison print affected analysis of the latent mark, possibly influencing allocation of attention, visual search, and threshold for determining a 'signal'. We also found that even without the context of the comparison print there was still a lack of consistency in analysing latent marks. Not only was this reflected by inconsistency between different experts, but the same experts at different times were inconsistent with their own analysis. However, the characterization of these inconsistencies depends on the standard and definition of what constitutes inconsistent. Furthermore, these effects were not uniform; the lack of consistency varied across fingerprints and experts. We propose solutions to mediate variability in the analysis of friction ridge skin.
Resumo:
[Table des matières] 1. Introduction to the control banding method : Nanomaterials and occupational risk assessment; Alternative method known as control banding; Scope and limits of control banding. - 2. Control banding process applied to manufactured nanomaterials: General points; Operating principle. - 3. Implementation of control banding: Gathering of information; Hazard bands; Exposure bands; Allocation of risk control bands. - 4. Bibliography: Publications; Books, reports, opinions, bulletins; Standards and references; Legislation and regulations; Websites. - Annexes
Resumo:
Selection of action may rely on external guidance or be motivated internally, engaging partially distinct cerebral networks. With age, there is an increased allocation of sensorimotor processing resources, accompanied by a reduced differentiation between the two networks of action selection. The present study examines the age effects on the motor-related oscillatory patterns related to the preparation of externally and internally guided movements. Thirty-two older and 30 younger adults underwent three delayed motor tasks with S1 as preparatory and S2 as imperative cue: Full, laterality instructed by S1 (external guidance); Free, laterality freely selected (internal guidance); None, laterality instructed by S2 (no preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Motor-Related Amplitude Asymmetries (MRAA), indexing the lateralization of oscillatory activities, were analyzed within the S1-S2 interval in the mu (9-12 Hz) and low beta (15-20 Hz) motor-related frequency bands. Reaction times to S2 were slower in older than younger subjects, and slower in the Free than in the Full condition in older subjects only. In the Full condition, there were significant mu MRAA in both age groups, and significant low beta MRAA only in older adults. The Free condition was associated with large mu MRAA in younger adults and limited low beta MRAA in older adults. In younger subjects, the lateralization of mu activity in both Full and Free conditions indicated effective external and internal motor preparation. In older subjects, external motor preparation was associated with lateralization of low beta in addition with mu activity, compatible with an increase of motor-related resources. In contrast, absence of mu and limited low beta lateralization in internal motor preparation was concomitant with reaction time slowing and suggested less efficient cerebral processes subtending free movement selection in older adults, indicating reduced capacity for internally driven action with age.
Resumo:
Deciding whether two fingerprint marks originate from the same source requires examination and comparison of their features. Many cognitive factors play a major role in such information processing. In this paper we examined the consistency (both between- and within-experts) in the analysis of latent marks, and whether the presence of a 'target' comparison print affects this analysis. Our findings showed that the context of a comparison print affected analysis of the latent mark, possibly influencing allocation of attention, visual search, and threshold for determining a 'signal'. We also found that even without the context of the comparison print there was still a lack of consistency in analysing latent marks. Not only was this reflected by inconsistency between different experts, but the same experts at different times were inconsistent with their own analysis. However, the characterization of these inconsistencies depends on the standard and definition of what constitutes inconsistent. Furthermore, these effects were not uniform; the lack of consistency varied across fingerprints and experts. We propose solutions to mediate variability in the analysis of friction ridge skin.
Resumo:
This article investigates the allocation of demand risk within an incomplete contract framework. We consider an incomplete contractual relationship between a public authority and a private provider (i.e. a public-private partnership), in which the latter invests in non-verifiable cost-reducing efforts and the former invests in non-verifiable adaptation efforts to respond to changing consumer demand over time. We show that the party that bears the demand risk has fewer hold-up opportunities and that this leads the other contracting party to make more effort. Thus, in our model, bearing less risk can lead to more effort, which we describe as a new example of âeuro~counter-incentivesâeuro?. We further show that when the benefits of adaptation are important, it is socially preferable to design a contract in which the demand risk remains with the private provider, whereas when the benefits of cost-reducing efforts are important, it is socially preferable to place the demand risk on the public authority. We then apply these results to explain two well-known case studies.