108 resultados para aerobic oxidation
em Université de Lausanne, Switzerland
Resumo:
Discrepancies appear in studies comparing fat oxidation between men and women. Therefore, this study aimed to quantitatively describe and compare whole-body fat oxidation kinetics between genders during exercise, using a sinusoidal (SIN) model. Twelve men and 11 women matched for age, body mass index, and aerobic fitness (maximal oxygen uptake and maximal power output per kilogram of fat-free mass (FFM)) performed submaximal incremental tests (Incr) with 5-min stages and a 7.5% maximal power output increment on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry, and plotted as a function of exercise intensity. The SIN model, which includes 3 independent variables (dilatation, symmetry, translation) that account for the main quantitative characteristics of kinetics, was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). During Incr, women exhibited greater fat oxidation rates from 35% to 85% maximal oxygen uptake, MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mg·kg FFM-1·min-1), and Fatmax (58.1% ± 1.9% vs. 50.0% ± 2.7% maximal oxygen uptake) than men (p < 0.05). While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (p > 0.05), the fat oxidation curve tended to be shifted toward higher exercise intensities in women (rightward translation, p = 0.08). These results support the idea that women have a greater reliance on fat oxidation than men during submaximal exercise, but also indicate that this greater fat oxidation is shifted toward higher exercise intensities in women than in men.
Resumo:
Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.
Resumo:
PURPOSE: The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). METHODS: The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. RESULTS: During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). CONCLUSIONS: These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.
Resumo:
Introduction Discrepancies appear in studies comparing fat oxidation between men and women during exercise (1). Therefore, this study aimed to quantitatively describe and compare whole body fat oxidation kinetics between genders during exercise using a sinusoidal model (SIN) (2). Methods Twelve men and 11 women matched for age, body mass index (23.4±0.6 kg.m-2 and 21.5±0.8 kg.m-2, respectively) and aerobic fitness [maximal oxygen uptake ( ) (58.5±1.6 mL.kg FFM-1.min-1 and 55.3±2.0 mL.kg FFM-1.min-1, respectively) and power output ( ) per kilogram of fat-free mass (FFM)] performed submaximal incremental tests (Incr) with 5-min stages and 7.5% increment on a cycle ergometer. Respiratory and HR values were averaged over the last 2 minutes of each stage. All female study participants were eumenorrheic, reported regular menstrual cycles (28.6 ± 0.8 days) and were not taking oral contraceptives (OC) or other forms of exogenous ovarian hormones. Women were studied in the early follicular phase (FP) of their menstrual cycle (between days 3 and 8, where day 1 is the first day of menses). Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model (2), which includes three independent variables (dilatation, symmetry, translation), was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). Results During Incr, women exhibited greater fat oxidation rates from 35 to 85% , MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mgkg FFM-1min-1) and Fatmax (58.1 ± 1.9 vs. 50.0 ± 2.7% ) (P<0.05) than men. While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (P>0.05), the fat oxidation curve tended to be shifted towards higher exercise intensities in women (rightward translation, P=0.08). Conclusion These results showed that women, eumenorrheic, not taking OC and tested in FP, have a greater reliance on fat oxidation than men during submaximal exercise, but they also indicate that this greater fat oxidation is shifted towards higher exercise intensities in women compared with men. References 1. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4: 499-502, 2001. 2. Cheneviere X, Malatesta D, Peters EM, and Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc 41: 1615-1625, 2009.
Resumo:
Aerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fatmax) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fatmax and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fatmax measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test. Fifteen healthy males [body mass index 23.1±0.6 kg/m2, maximal oxygen consumption ([Formula: see text]) 52.0±2.0 ml/kg/min] completed a maximal test and two identical submaximal incremental tests on ergocycle (30-min rest followed by 5-min stages with increments of 7.5% of the maximal power output). Fat and carbohydrate oxidation rates were determined using indirect calorimetry. Fatmax was determined with three approaches: the sine model (SIN), measured values (MV) and 3rd polynomial curve (P3). Intra-individual coefficients of variation (CVs) and limits of agreement were calculated. CV for Fatmax determined with SIN was 16.4% and tended to be lower than with P3 and MV (18.6% and 20.8%, respectively). Limits of agreement for Fatmax were -2±27% of [Formula: see text] with SIN, -4±32 with P3 and -4±28 with MV. CVs of oxygen uptake, carbon dioxide production and respiratory exchange rate were <10% at rest and <5% during exercise. Conversely, CVs of fat oxidation rates (20% at rest and 24-49% during exercise) and carbohydrate oxidation rates (33.5% at rest, 8.5-12.9% during exercise) were higher. The intra-individual variability of Fatmax and fat oxidation rates was high (CV>15%), regardless of the data analysis approach employed. Further research on the determinants of the variability of Fatmax and fat oxidation rates is required.
Resumo:
OBJECTIVE: To investigate the effect of aerobic training in the context of antioxidant supplementation on systemic oxidative stress and leukocytes heat shock protein (Hsp)72 expression in the elderly. DESIGN: Sixteen septuagenarians (8 males and 8 females, mean age 74.6) were supplemented with Vitamin C and E (respectively 500 and 100mg per day) and randomly assigned either to sedentary (AS) or individualized aerobically trained (AT) group for 8 weeks. METHODS: Plasma Vitamin C and E concentrations and aerobic fitness, as well as resting and post graded exercise (GXT) Hsp72 expression in leukocytes, plasma levels of thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein product (AOPP) were measured pre and post training / supplementation. RESULTS: At the end of the intervention, the two groups showed a significant increase in resting plasma vitamin C and E (approximately 50 and 20% increase respectively) and a significant decrease in both resting and post GXT plasma TBARS and AOPP (approximately 25 and 20% decrease respectively). These changes were of similar magnitude in the two groups. The reduced oxidative stress was concomitant with a 15% decreased expression of Hsp72 in monocytes and granulocytes in both groups. CONCLUSION: This study provides evidence that in elderly, increased concentration of antioxidant vitamins C and E is associated with a reduction in oxidative stress and leukocytes Hsp72. In this context, 8 weeks of aerobic training has no impact on oxidative stress or leukocytes Hsp72 expression in elderly people.
Resumo:
This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.
Resumo:
OBJECTIVE: To compare the effects of two different 2-week-long training modalities [continuous at the intensity eliciting the maximal fat oxidation (Fatmax ) versus high-intensity interval training (HIIT)] in men with class II and III obesity. METHODS: Nineteen men with obesity (BMI ≥ 35 kg(.) m(-2) ) were assigned to Fatmax group (GFatmax ) or to HIIT group (GHIIT ). Both groups performed eight cycling sessions matched for mechanical work. Aerobic fitness and fat oxidation rates (FORs) during exercise were assessed prior and following the training. Blood samples were drawn to determine hormones and plasma metabolites levels. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA2-IR). RESULTS: Aerobic fitness and FORs during exercise were significantly increased in both groups after training (P ≤ 0.001). HOMA2-IR was significantly reduced only for GFatmax (P ≤ 0.001). Resting non-esterified fatty acids (NEFA) and insulin decreased significantly only in GFatmax (P ≤ 0.002). CONCLUSIONS: Two weeks of HIIT and Fatmax training are effective for the improvement of aerobic fitness and FORs during exercise in these classes of obesity. The decreased levels of resting NEFA only in GFatmax may be involved in the decreased insulin resistance only in this group.
Resumo:
PURPOSE: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition. METHODS: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)]. RESULTS: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 +/- 10% VO2max) and MFO (0.37 +/- 0.16 g x min(-1)) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001). CONCLUSIONS: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.
Resumo:
Adiposity, low aerobic fitness and low levels of activity are all associated with clustered cardiovascular disease risk in children and their high prevalence represents a major public health concern. The aim of this study is to investigate the relationship of objectively measured physical activity (PA) with motor skills (agility and balance), aerobic fitness and %body fat in young children. This study is a cross-sectional and longitudinal analyses using mixed linear models. Longitudinal data were adjusted for baseline outcome parameters. In all, 217 healthy preschool children (age 4-6 years, 48% boys) participated in this study. PA (accelerometers), agility (obstacle course), dynamic balance (balance beam), aerobic fitness (20-m shuttle run) and %body fat (bioelectric impedance) at baseline and 9 months later. PA was positively associated with both motor skills and aerobic fitness at baseline as well as with their longitudinal changes. Specifically, only vigorous, but not total or moderate PA, was related to changes in aerobic fitness. Higher PA was associated with less %body fat at baseline, but not with its change. Conversely, baseline motor skills, aerobic fitness or %body fat were not related to changes in PA. In young children, baseline PA was associated with improvements in motor skills and in aerobic fitness, an important determinant of cardiovascular risk.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Resumo:
Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.
Resumo:
Seven young men spent three nights and 2 d in a respiration chamber where their rates of energy expenditure and substrate oxidation were continuously measured by indirect calorimetry. During the first 24 h they ingested a mixed maintenance diet containing 35% of calories as fat. An additional amount of 106 +/- 6 g fat/24 h (means +/- SD) was added to this diet during the following 36 h. The fat supplement (987 +/- 55 kcal/d) did not alter 24-h energy expenditure (2783 +/- 232 vs 2820 +/- 284 kcal/d) and failed to promote the use of fat as a metabolic fuel (fat oxidation 1032 +/- 205 vs 1042 +/- 205 kcal/d). The overall energy balance was closely correlated with the fat balance (r = 0.96, p less than 0.001) but not with the carbohydrate balance (r = -0.12, NS). These data indicate that substantial imbalances between intake and oxidation are much more likely for fat than for carbohydrate.