35 resultados para aeolian geomorphodynamic, dust dispersion, Mongolia, Gobi desert, ESR, REE, particle emission
em Université de Lausanne, Switzerland
Resumo:
Mineral dust aerosols recently collected at the high-altitude Jungfraujoch research station (46 degrees 33'51 `' N, 7 degrees 59'06 `' E; 3580 m a.s.l.) were compared to mineral dust deposited at the Colle Gnifetti glacier (45 degrees 52'50 `' N, 7 degrees 52'33 `' E; 4455 m a.s.l.) over the last millennium. Radiogenic isotope signatures and backward trajectories analyses indicate that major dust sources are situated in the north-central to north-western part of the Saharan desert. Less radiogenic Sr isotopic compositions of PM10 aerosols and of mineral particles deposited during periods of low dust transfer likely result from the enhancement of the background chemically-weathered Saharan source. Saharan dust mobilization and transport were relatively reduced during the second part of the Little Ice Age (ca. 1690-1870) except within the greatest Saharan dust event deposited around 1770. After ca. 1870, sustained dust deposition suggests that increased mineral dust transport over the Alps during the last century could be due to stronger spring/summer North Atlantic southwesterlies and drier winters in North Africa. On the other hand, increasing carbonaceous particle emissions from fossil fuel combustion combined to a higher lead enrichment factor point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers during the last century.
Resumo:
Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Modern sonic logging tools designed for shallow environmental and engineering applications allow for P-wave phase velocity measurements over a wide frequency band. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and source frequencies ranging from approximately 1 to 30 kHz, the observable poro-elastic P-wave velocity dispersion is sufficiently pronounced to allow for reliable first-order estimations of the underlying permeability structure. These predictions have been tested on and verified for a surficial alluvial aquifer. Our results indicate that, even without any further calibration, the thus obtained permeability estimates as well as their variabilities within the pertinent lithological units are remarkably close to those expected based on the corresponding granulometric characteristics.
Resumo:
Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.
Resumo:
The exposure to dust and polynuclear aromatic hydrocarbons (PAH) of 15 truck drivers from Geneva, Switzerland, was measured. The drivers were divided between "long-distance" drivers and "local" drivers and between smokers and nonsmokers and were compared with a control group of 6 office workers who were also divided into smokers and nonsmokers. Dust was measured on 1 workday both by a direct-reading instrument and by sampling. The local drivers showed higher exposure to dust (0.3 mg/m3) and PAH than the long-distance drivers (0.1 mg/m3), who showed no difference with the control group. This observation may be due to the fact that the local drivers spend more time in more polluted areas, such as streets with heavy traffic and construction sites, than do the long-distance drivers. Smoking does not influence exposure to dust and PAH of professional truck drivers, as measured in this study, probably because the ventilation rate of the truck cabins is relatively high even during cold days (11-15 r/h). The distribution of dust concentrations was shown in some cases to be quite different from the expected log-normal distribution. The contribution of diesel exhaust to these exposures could not be estimated since no specific tracer was used. However, the relatively low level of dust exposure dose not support the hypothesis that present day levels of diesel exhaust particulates play a significant role in the excess occurrence of lung cancer observed in professional truck drivers.
Resumo:
Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.
Resumo:
Introduction: Bioaerosols such as grain dust (GD) elicit direct immunological reactions within the human respiratory system. Workplace-dependent exposure to GD may induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. Aims: To assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012 to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). Two evaluations at high- and low-exposing seasons take place, during which an occupational and a medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO) and specific blood IgG and IgE are titrated. Results: The preliminary results are those of 2 of the 4 exposed groups, (harvesters and mill workers), compared to the control groups, at first assessment (n=100). Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%) and dermatologic (36%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the groups exposed to GD.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.