214 resultados para adverse pregnancy outcome
em Université de Lausanne, Switzerland
Resumo:
AIMS: TNF-α inhibitors are considered relatively safe in pregnancy but experience is still limited. The aim of this study was to evaluate the risk of major birth defects, spontaneous abortion, preterm birth and reduced birth weight after first trimester exposure to TNF-α inhibitors. METHODS: Pregnancy outcomes of women on adalimumab, infliximab, etanercept, certolizumab pegol or golimumab were evaluated in a prospective observational cohort study and compared with outcomes of a non-exposed random sample. The samples were drawn from pregnancies identified by institutes collaborating in the European Network of Teratology Information Services. RESULTS: In total, 495 exposed and 1532 comparison pregnancies were contributed from nine countries. The risk of major birth defects was increased in the exposed (5.0%) compared with the non-exposed group (1.5%; adjusted odds ratio (ORadj ) 2.2, 95% CI 1.0, 4.8). The risk of preterm birth was increased (17.6%; ORadj 1.69, 95% CI 1.1, 2.5), but not the risk of spontaneous abortion (16.2%; adjusted hazard ratio [HRadj ] 1.06, 95% CI 0.7, 1.7). Birth weights adjusted for gestational age and sex were significantly lower in the exposed group compared to the non-exposed cohort (P = 0.02). As a diseased comparison group was not possible to ascertain, the influence of disease and treatment on birth weight and preterm birth could not be differentiated. CONCLUSIONS: TNF-α inhibitors may carry a risk of adverse pregnancy outcome of moderate clinical relevance. Considering the impact of insufficiently controlled autoimmune disease on the mother and the unborn child, TNF-α inhibitors may nevertheless be a treatment option in women with severe disease refractory to established immunomodulatory drugs.
Resumo:
OBJECTIVE: This contribution addresses the risk associated with exposure to statins during pregnancy. DESIGN: Multicentre observational prospective controlled study. SETTING: European Network of Teratology Information Services. POPULATION: Pregnant women who contacted one of 11 participating centres, seeking advice about exposure to statins during pregnancy, or to agents known to be nonteratogenic. METHODS: Pregnancies exposed during first trimester to statins were followed up prospectively, and their outcomes were compared with a matched control group. MAIN OUTCOME MEASURES: Rates of major birth defects, live births, miscarriages, elective terminations, preterm deliveries and gestational age and birthweight at delivery. RESULTS: We collected observations from 249 exposed pregnancies and 249 controls. The difference in the rate of major birth defects between the statin-exposed and the control groups was small and statistically nonsignificant (4.1% versus 2.7% odds ratio [OR] 1.5; 95% confidence interval [95% CI] 0.5-4.5, P = 0.43). In an adjusted Cox model, the difference between miscarriage rates was also small and not significant (hazard ratio 1.36, 95% CI 0.63-2.93, P = 0.43). Premature birth was more frequent in exposed pregnancies (16.1% versus 8.5%; OR 2.1, 95% CI 1.1-3.8, P = 0.019). Nonetheless, median gestational age at birth (39 weeks, interquartile range [IQR] 37-40 versus 39 weeks, IQR 38-40, P = 0.27) and birth weight (3280 g, IQR 2835-3590 versus 3250 g, IQR 2880-3630, P = 0.95) did not differ between exposed and non-exposed pregnancies. CONCLUSIONS: This study did not detect a teratogenic effect of statins. Its statistical power remains insufficient to challenge current recommendations of treatment discontinuation during pregnancy.
Resumo:
Introduction: Statin use for the treatment of hypercholesterolemia in women of childbearing age is increasingly common. However, published data on pregnancy outcome after exposure to statins are scarce and conflicting. This contribution addresses the safety of exposure to statins during pregnancy.Method: In a multi-center (n = 11) observational, prospective study we compared the outcomes of 249 women exposed during the 1st trimester of pregnancy to simvastatin (n = 124), atorvastatin (n = 67), pravastatin (n = 32), rosuvastatin (n = 18), fluvastatin (n = 7) or cerivastatin (n = 1) with a control group exposed to agents known to be non-teratogenic (n = 249). The data were collected by members of the European Network of Teratology Information Services (ENTIS) during individual risk counseling between 1990 and 2009. Standardized procedures for data collection were used in each center.Results: The difference in the rate of major birth defects between the statin-exposed group and the control group was not statistically significant (4.0% vs. 2.7% OR 1.5; 95% CI 0.5-4.5, P = 0.44). The crude rate of spontaneous abortions (12.8% vs. 7.1%, OR 1.9, 95% CI 1.0-3.6, P = 0.04) was higher in the exposed group. However, after adjustment to maternal age and gestational age at initial contact, the difference became statistically insignificant. The rate of elective pregnancy-termination (8.8% vs. 4.4%, P = 0.05) was higher and the rate of deliveries resulting in live births was significantly lower in the statin exposed group (77.9% vs. 88.4%, P = 0.002). Prematurity was more frequent in exposed pregnancies (16.1% vs. 8.5%; OR 2.1, 95% CI 1.1-3.8, P = 0.02). Nonetheless, gestational age at birth (median 39 weeks, IQR 37-40 vs. 39 weeks, IQR 38-40, P = 0.27) and birth weight (median 3280 g, IQR 2835-3590 vs. 3250 g, IQR 2880-3600, P = 0.95) did not differ between exposed and non-exposed pregnancies.Conclusion: This study did not detect a clear teratogenic effect of statins. Its statistical power however is not sufficient to reverse the recommendation of treatment discontinuation during pregnancy. At most, the results are reassuring in case of inadvertent exposure.
Resumo:
Clin Microbiol Infect 2011; 17: 1312-1322 ABSTRACT: This review considers the role of intracellular bacteria in adverse pregnancy outcomes, such as miscarriage, stillbirths, and preterm labour. The cause of miscarriage, stillbirth and preterm labour often remains unexplained. Intracellular bacteria that grow either poorly or not at all on media used routinely to detect human pathogens could be the aetiological agents of these obstetric conditions. For example, Listeria monocytogenes and Coxiella burnetti are intracellular bacteria that have a predilection for the fetomaternal unit and may induce fatal disease in the mother and/or fetus. Both are important foodborne or zoonotic pathogens in pregnancy. Preventive measures, diagnostic tools and treatment will be reviewed. Moreover, we will also address the importance in adverse pregnancy outcomes of other intracellular bacteria, including Brucella abortus and various members of the order Chlamydiales. Indeed, there is growing evidence that Chlamydia trachomatis, Chlamydia abortus and Chlamydia pneumoniae infections may also result in adverse pregnancy outcomes in humans and/or animals. Moreover, newly discovered Chlamydia-like organisms have recently emerged as new pathogens of both animals and humans. For example, Waddlia chondrophila, a Chlamydia-related bacterium isolated from aborted bovine fetuses, has also been implicated in human miscarriages. Future research should help us to better understand the pathophysiology of adverse pregnancy outcomes caused by intracellular bacteria and to determine the precise mode of transmission of newly identified bacteria, such as Waddlia and Parachlamydia. These emerging pathogens may represent the tip of the iceberg of a large number of as yet unknown intracellular pathogenic agents.
Resumo:
Introduction: Mirtazapine is a noradrenergic and serotonergic antidepressant mainly acting through blockade of presynaptic alpha-2 receptors. Published data on pregnancy outcome after exposure to mirtazapine are scarce. This study addresses the risk associated with exposure to mirtazapine during pregnancy. Patients (or Materials) and Methods: Multicenter (n = 11), observational prospective cohort study comparing pregnancy outcomes after exposure to mirtazapine with 2 matched control groups: exposure to any selective serotonin reuptake inhibitor (SSRI) as a diseasematched control group, and general controls with no exposure to medication known to be teratogenic or to any antidepressant. Data were collected by members of the European Network of Teratology Information Services (ENTIS) during individual risk counseling between 1995 and 2011. Standardized procedures for data collection were used in each center. Results: A total of 357 pregnant women exposed to mirtazapine at any time during pregnancy were included in the study and compared with 357 pregnancies from each control group. The rate of major birth defects between the mirtazapine and the SSRI group did not differ significantly (4.5% vs 4.2%; unadjusted odds ratio, 1.1; 95% confidence interval, 0.5-2.3, P = 0.9). A trend toward a higher rate of birth defects in the mirtazapine group compared with general controls did not reach statistical significance (4.2% vs 1.9%; OR, 2.4; 95% CI, 0.9-6.3; P = 0.08). The crude rate of spontaneous abortions did not differ significantly between the mirtazapine, the SSRI, and the general control groups (9.5% vs 10.4% vs 8.4%; P = 0.67), neither did the rate of deliveries resulting in live births (79.6% vs 84.3% in both control groups; P = 0.15). However, a higher rate of elective pregnancy-termination was observed in the mirtazapine group compared with SSRI and general controls (7.8% vs 3.4% vs 5.6%; P = 0.03). Premature birth (< 37 weeks) (10.6% vs 10.1% vs 7.5%; P = 0.38), gestational age at birth (median, 39 weeks; interquartile range (IQR), 38-40 in all groups; P = 0.29), and birth weight (median, 3320 g; IQR, 2979-3636 vs 3230 g; IQR, 2910-3629 vs 3338 g; IQR, 2967-3650; P = 0.34) did not differ significantly between the groups. Conclusion: This study did not observe a statistically significant difference in the rate of major birth defects between mirtazapine, SSRI-exposed, and nonexposed pregnancies. A slightly higher rate of birth defects was, however, observed in the mirtazapine and SSRI groups compared with the low rate of birth defects in our general controls. Overall, the pregnancy outcome after mirtazapine exposure in this study is very similar to that of the SSRI-exposed control group.
Resumo:
Introduction Statin use in women of childbearing age is increasingly common. However, published data on pregnancy outcome after exposure to statins are scarce and conflicting. This contribution addresses the safety of statin use during pregnancy.Materials and Methods In a multi-centre (n = 11), prospective study we compared the outcomes of 249 women exposed during the 1st trimester of pregnancy to simvastatin (n = 124), atorvastatin (n = 67), pravastatin (n = 32), rosuvastatin (n = 18), fl uvastatin (n = 7) or cerivastatin (n = 1) with a control group exposed to agents known to be non-teratogenic (n = 249). Data were collected by members of the European Network of Teratology Information Services during individual risk counselling.Results The difference in the rate of major birth defects between the statinexposed and the control group was statistically insignificant (4.0% versus 2.7% OR 1.5; 95% CI 0.5-4.5, p = 0.44). The crude rate of spontaneous abortions (12.8% versus 7.1%, OR 1.9, 95% CI 1.0-3.6, p = 0.04) was higher in the exposed group. However, after adjustment to maternal age and gestational age at initial contact, the difference became insignificant. The rate of elective pregnancy-termination (8.8% versus 4.4%, p = 0.05) was higher and the rate of live births was lower in the exposed group (77.9% versus 88.4%, p = 0.002). Prematurity was more frequent in exposed pregnancies (16.1% versus 8.5%; OR 2.1, 95% CI 1.1- 3.8, p = 0.02). Nonetheless, gestational age at birth (median 39 weeks, IQR 37-40 versus 39 weeks, IQR 38-40, p = 0.27) and birth weight (median 3280 g, IQR 2835-3590 versus 3250 g, IQR 2880- 3600, p = 0.95) did not differ between exposed and non-exposed pregnancies.Conclusion This study did not detect a teratogenic effect of statins. Its statistical power however is not sufficient to reverse the recommendation of treatment discontinuation during pregnancy.
Resumo:
BACKGROUND: As embryo selection is not allowed by law in Switzerland, we need a single early scoring system to identify zygotes with high implantation potential and to select zygotes for fresh transfer or cryopreservation. The underlying aim is to maximize the cumulated pregnancy rate while limiting the number of multiple pregnancies. METHODS: In all, 613 fresh and 617 frozen-thawed zygotes were scored for proximity, orientation and centring of the pronuclei, cytoplasmic halo, and number and polarization of the nucleolar precursor bodies. From these individual scores, a cumulated pronuclear score (CPNS) was calculated. Correlation between CPNS and implantation was examined and compared between fresh and frozen-thawed zygotes. The effect of freezing on CPNS was also investigated. RESULTS: CPNS was positively associated with embryo implantation in both fresh and frozen zygotes. With similar CPNS, frozen zygotes presented implantation rates as high as those of fresh zygotes. Nucleolar precursor bodies pattern and cytoplasmic halo appeared as the most important factors predictive of implantation for both types of zygotes, while pronuclei position was specifically relevant for frozen-thawed zygotes. Freezing induced an alteration of most zygote parameters, resulting in a significantly lower CPNS and a lower pregnancy rate. CONCLUSIONS: CPNS may be used as a single prognostic tool for implantation of both fresh and frozen-thawed zygotes. Lower CPNS values of frozen-thawed zygotes may also be indicative of freezing damage to zygotes. Successful implantation of frozen zygotes despite lower CPNS suggests that they may recover after thawing and in vitro culture.
Resumo:
OBJECTIVE: To assess the public health consequences of the rise in multiple births with respect to congenital anomalies. DESIGN: Descriptive epidemiological analysis of data from population-based congenital anomaly registries. SETTING: Fourteen European countries. POPULATION: A total of 5.4 million births 1984-2007, of which 3% were multiple births. METHODS: Cases of congenital anomaly included live births, fetal deaths from 20 weeks of gestation and terminations of pregnancy for fetal anomaly. MAIN OUTCOME MEASURES: Prevalence rates per 10,000 births and relative risk of congenital anomaly in multiple versus singleton births (1984-2007); proportion prenatally diagnosed, proportion by pregnancy outcome (2000-07). Proportion of pairs where both co-twins were cases. RESULTS: Prevalence of congenital anomalies from multiple births increased from 5.9 (1984-87) to 10.7 per 10,000 births (2004-07). Relative risk of nonchromosomal anomaly in multiple births was 1.35 (95% CI 1.31-1.39), increasing over time, and of chromosomal anomalies was 0.72 (95% CI 0.65-0.80), decreasing over time. In 11.4% of affected twin pairs both babies had congenital anomalies (2000-07). The prenatal diagnosis rate was similar for multiple and singleton pregnancies. Cases from multiple pregnancies were less likely to be terminations of pregnancy for fetal anomaly, odds ratio 0.41 (95% CI 0.35-0.48) and more likely to be stillbirths and neonatal deaths. CONCLUSIONS: The increase in babies who are both from a multiple pregnancy and affected by a congenital anomaly has implications for prenatal and postnatal service provision. The contribution of assisted reproductive technologies to the increase in risk needs further research. The deficit of chromosomal anomalies among multiple births has relevance for prenatal risk counselling.
Resumo:
OBJECTIVE: High-dose methotrexate (MTX) exposure during pregnancy is associated with embryopathy. The teratogenic potential of MTX at dosages typically used in the treatment of rheumatic diseases remains uncertain. The aim of this study was to evaluate the risk of spontaneous abortion, major birth defects, elective termination of pregnancy, shortened gestational age at delivery, and reduced birth weight in women exposed to MTX. METHODS: Pregnancy outcome in women taking MTX (≤30 mg/week) either after conception or within the 12 weeks before conception was evaluated in a prospective observational multicenter cohort study. Pregnancy outcomes in the MTX group were compared to outcomes in a group of disease-matched women and a group of women without autoimmune diseases (neither group was exposed to MTX). RESULTS: The study sample included 324 MTX-exposed pregnancies (188 exposed post-conception, 136 exposed pre-conception), 459 disease-matched comparison women, and 1,107 comparison women without autoimmune diseases. In the post-conception cohort, the cumulative incidence of spontaneous abortion was 42.5% (95% confidence interval [95% CI] 29.2-58.7), which was significantly higher than the incidence of spontaneous abortion in either comparison group. The risk of major birth defects (7 of 106 [6.6%]) was elevated compared to both the cohort of women without autoimmune diseases (29 of 1,001 [2.9%]) (adjusted odds ratio [OR] 3.1 [95% CI 1.03-9.5]) and the disease-matched cohort (14 of 393 [3.6%]) (adjusted OR 1.8 [95% CI 0.6-5.7]). None of the malformations were clearly consistent with MTX embryopathy. Neither the cumulative incidence of spontaneous abortion (14.4% [95% CI 8.0-25.3]) nor the risk of major birth defects (4 of 114 [3.5%]) was increased in the pre-conception cohort. Elective termination rates were increased in both of the MTX-exposed cohorts. There were no other significant differences among groups in other study end points. CONCLUSION: Post-conception administration of MTX at dosages typically used in the treatment of rheumatic diseases was associated with an increased risk of major birth defects and spontaneous abortion. Such evidence was not found among women in our pre-conception cohort.
Resumo:
Concerns have been raised about the use of topical retinoids since the publication of isolated cases of characteristic retinoid embryopathy, originally described after oral use. A collaborative study of the European Network of Teratology Information Services was carried out to evaluate the rate of congenital malformations following first-trimester topical retinoid exposure. A population of 235 exposed pregnant women was compared with 444 controls. No significant differences were observed between groups with regard to the rates of spontaneous abortion (odds ratio [95% confidence interval], 1.5 [0.8-2.7]), minor birth defects (1.3 [0.4-3.7]), and major birth defects (1.8 [0.6-5.4]). No child showed features of retinoid embryopathy. The rate of elective termination in the exposed group was increased 3-fold (3.4 [1.5-7.8]). In conclusion, these results do not suggest an increased risk of retinoid embryopathy. However, according to current knowledge, topical retinoids cannot be advised for use during pregnancy because their risk/benefit ratio remains questionable.
Resumo:
PURPOSE OF REVIEW: Mycoplasma hominis and Ureaplasma urealyticum may colonize the human genital tract and have been associated with adverse pregnancy outcomes. Chorioamnionitis, spontaneous preterm labour and preterm premature rupture of membranes are significant contributors to neonatal morbidity and mortality. However, as these bacteria can reside in the normal vaginal flora, there are controversies regarding their true role during pregnancy and thus the need to treat these organisms. RECENT FINDINGS: We review here the recent data on the epidemiology of mycoplasmas and their clinical role during pregnancy. The association of these organisms with preterm labour has been suggested by many observational studies, but proof of causality remains limited. PCR is an excellent alternative to culture to detect the presence of these organisms, but culture allows antibiotic susceptibility testing. Whether antimicrobial treatment of mycoplasma-colonized pregnant patients can effectively reduce the incidence of adverse pregnancy outcomes warrants further investigations. SUMMARY: The role of Mycoplasma spp. and U. urealyticum in adverse pregnancy outcomes is increasingly accepted. However, sole presence of these microorganisms in the vaginal flora might be insufficient to cause pathological issues, but their combination with other factors such as bacterial vaginosis or cervical incompetence may be additionally needed to induce preterm birth.
Resumo:
BACKGROUND: There is limited safety information on most drugs used during pregnancy. This is especially true for medication against tropical diseases because pharmacovigilance systems are not much developed in these settings. The aim of the present study was to demonstrate feasibility of using Health and Demographic Surveillance System (HDSS) as a platform to monitor drug safety in pregnancy. METHODS: Pregnant women with gestational age below 20 weeks were recruited from Reproductive and Child Health (RCH) clinics or from monthly house visits carried out for the HDSS. A structured questionnaire was used to interview pregnant women. Participants were followed on monthly basis to record any new drug used as well as pregnancy outcome. RESULTS: 1089 pregnant women were recruited; 994 (91.3%) completed the follow-up until delivery. 98% women reported to have taken at least one medication during pregnancy, mainly those used in antenatal programmes. Other most reported drugs were analgesics (24%), antibiotics (17%), and antimalarial (15%), excluding IPTp. Artemether-lumefantrine (AL) was the most used antimalarial for treating illness by nearly 3/4 compared to other groups of malaria drugs. Overall, antimalarial and antibiotic exposures in pregnancy were not significantly associated with adverse pregnancy outcome. Iron and folic acid supplementation were associated with decreased risk of miscarriage/stillbirth (OR 0.1; 0.08 - 0.3). CONCLUSION: Almost all women were exposed to medication during pregnancy. Exposure to iron and folic acid had a beneficial effect on pregnancy outcome. HDSS proved to be a useful platform to establish a reliable pharmacovigilance system in resource-limited countries. Widening drug safety information is essential to facilitate evidence based risk-benefit decision for treatment during pregnancy, a major challenge with newly marketed medicines.
Resumo:
This multicenter, observational prospective cohort study addresses the risk associated with exposure to mirtazapine during pregnancy. Pregnancy outcomes after exposure to mirtazapine were compared with 2 matched control groups: (1) exposure to any selective serotonin reuptake inhibitor (SSRI, control subjects with a psychiatric condition) and (2) no exposure to medication known to be teratogenic or any antidepressant (general control subjects). Data were collected by members of the European Network of Teratology Information Services between 1995 and 2011. Observations from 357 exposed pregnancies were compared with 357 pregnancies from each control group. The rate of major birth defects between the mirtazapine and the SSRI group did not differ significantly (4.5% vs 4.2%; odds ratio [OR], 1.1; 95% confidence interval [95% CI], 0.5-2.3; P = 0.9). A trend toward a higher rate of birth defects in the mirtazapine group compared with general control subjects (4.5% vs 1.9%; OR, 2.4; 95% CI, 0.9-6.3; P = 0.08) reached statistical significance after exclusion of chromosomal or genetic anomalies (4.1% vs 1.3%; OR, 3.3; 95% CI, 1.04-10.3; P = 0.03), but this difference became again nonsignificant if cases of exposure not comprising the first trimester were excluded from the analysis (3.4% vs 1.9%; OR, 1.8; 95% CI, 0.6-5.0; P = 0.26). The crude miscarriage rate did not differ significantly between the mirtazapine, the SSRI, and the general control groups (12.1% vs 12.0% vs 9.3%; P = 0.44). However, a higher rate of elective pregnancy termination was observed in the mirtazapine group compared with SSRI and general control subjects (7.8% vs 3.4% vs 5.6%; P = 0.03). This study did not observe a statistically significant difference in the rate of major birth defects after first-trimester exposure between mirtazapine, SSRI-exposed, and nonexposed pregnancies. A marginally higher rate of birth defects was, however, observed in the mirtazapine and SSRI groups compared with the low rate of birth defects in our general control subjects. Overall pregnancy outcome after mirtazapine exposure was similar to that of the SSRI-exposed control group.
Resumo:
OBJECTIVE: To describe prevalence, prenatal diagnosis and outcome for fetuses and infants with congenital hydrocephalus. METHODS: Data were taken from four European registries of congenital malformations (EUROCAT). The registries included are based on multiple sources of information and include information about livebirths, fetal deaths with GA > or = 20 weeks and terminations of pregnancy for fetal anomaly (TOPFA). All cases from the four registries diagnosed with congenital hydrocephalus and born in the period 1996-2003 were included in the study. Cases with hydrocephalus associated with neural tube defects were not included in the study. RESULTS: Eighty-seven cases with congenital hydrocephalus were identified during the study period giving an overall prevalence of 4.65 per 10,000 births. There were 41 livebirths (47%), four fetal deaths (5%) and 42 TOPFA (48%). Nine percent of all cases were from a multiple pregnancy. Additional non-cerebral major malformations were diagnosed in 38 cases (44%) and karyotype anomalies in eight cases (9%). Median GA at TOPFA was 21 weeks. Among livebirths 61% were diagnosed prenatally at a median GA of 31 weeks (range 17-40 weeks) and median GA at birth was 37 weeks. Fourteen liveborn infants (34%) died within the first year of life with the majority of deaths during the first week after birth. CONCLUSION: Congenital hydrocephalus is a severe congenital malformation often associated with other congenital anomalies. CH is often diagnosed prenatally, although sometimes late in pregnancy. A high proportion of affected pregnancies result in termination for severe fetal anomaly and there is a high mortality in livebirths.