75 resultados para acyl homoserine lactone
em Université de Lausanne, Switzerland
Resumo:
Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C(12)-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C(12)-homoserine lactone, may be used by other quorum-sensing molecules.
Resumo:
The global activator GacA, a highly conserved response regulator in Gram-negative bacteria, is required for the production of exoenzymes and secondary metabolites in Pseudomonas spp. The gacA gene of Pseudomonas aeruginosa PAO1 was isolated and its role in cell-density-dependent gene expression was characterized. Mutational inactivation of gacA resulted in delayed and reduced formation of the cell-density signal N-butyryl-L-homoserine lactone (BHL), of the cognate transcriptional activator RhIR (VsmR), and of the transcriptional activator LasR, which is known to positively regulate RhIR expression. Amplification of gacA on a multicopy plasmid caused precocious and enhanced production of BHL, RhIR and LasR. In parallel, the gacA gene dosage markedly influenced the BHL/RhIR-dependent formation of the cytotoxic compounds pyocyanin and cyanide and the exoenzyme lipase. However, the concentrations of another known cell-density signal of P. aeruginosa, N-oxododecanoyl-L-homoserine lactone, did not always match BHL concentrations. A model accounting for these observations places GacA function upstream of LasR and RhIR in the complex, cell-density-dependent signal-transduction pathway regulating several exoproducts and virulence factors of P. aeruginosa via BHL.
Resumo:
Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.
Resumo:
Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication.
Resumo:
Cell-to-cell signaling involving N-acyl-homoserine lactone compounds termed autoinducers (AIs) is instrumental to virulence factor production and biofilm development by Pseudomonas aeruginosa. In order to determine the importance of cell-to-cell signaling during the colonization of mechanically ventilated patients, we collected 442 P. aeruginosa pulmonary isolates from 13 patients. Phenotypic characterization showed that 81% of these isolates produced the AI-dependent virulence factors elastase, protease, and rhamnolipids. We identified nine genotypically distinct P. aeruginosa strains. Six of these strains produced AIs [N-butanoyl-homoserine lactone or N-(3-oxo-dodecanoyl)-homoserine lactone] and extracellular virulence factors (elastase, total exoprotease, rhamnolipid, hydrogen cyanide, or pyocyanin) in vitro. Three of the nine strains were defective in the production of both AIs and extracellular virulence factors. Two of these strains had mutational defects in both the lasR and rhlR genes, which encode the N-acyl-homoserine lactone-dependent transcriptional regulators LasR and RhlR, respectively. The third of these AI-deficient strains was only mutated in the lasR gene. Our observations suggest that most, but not all, strains colonizing intubated patients are able to produce virulence factors and that mutations affecting the cell-to-cell signaling circuit are preferentially located in the transcriptional regulator genes.
Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs.
Resumo:
The plant-beneficial bacterium Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions. Transcriptome analysis of typical phenotypic variants using microarrays containing coding as well as noncoding DNA fragments showed differential expression of several genes relevant to secondary metabolism and of the small RNA (sRNA) genes rsmX, rsmY, and rsmZ. Naturally occurring mutations in the gacS-gacA system accounted for phenotypic switching, which was characterized by downregulation of antifungal secondary metabolites (2,4-diacetylphloroglucinol and cyanide), indoleacetate, exoenzymes (lipase and protease), and three different N-acyl-homoserine lactone molecules. Moreover, in addition to abrogating these biocontrol traits, gacS and gacA mutations resulted in reduced expression of the type VI secretion machinery, alginate biosynthesis, and biofilm formation. In a gacA mutant, the expression of rsmX was completely abolished, unlike that of rsmY and rsmZ. Overexpression of any of the three sRNAs in the gacA mutant overruled the pleiotropic changes and restored the wild-type phenotypes, suggesting functional redundancy of these sRNAs. In conclusion, our data show that phenotypic switching in P. brassicacearum results from mutations in the gacS-gacA system.
Resumo:
In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments.
Resumo:
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Resumo:
In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor sigma(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa.
Resumo:
Posttranscriptional control is known to contribute to the regulation of secondary metabolism and virulence determinants in certain gram-negative bacteria. Here we report the isolation of a Pseudomonas aeruginosa gene which encodes a global translational regulatory protein, RsmA (regulator of secondary metabolites). Overexpression of rsmA resulted in a substantial reduction in the levels of extracellular products, including protease, elastase, and staphylolytic (LasA protease) activity as well as the PA-IL lectin, hydrogen cyanide (HCN), and the phenazine pigment pyocyanin. While inactivation of rsmA in P. aeruginosa had only minor effects on the extracellular enzymes and the PA-IL lectin, the production of HCN and pyocyanin was enhanced during the exponential phase. The influence of RsmA on N-acylhomoserine lactone-mediated quorum sensing was determined by assaying the levels of N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL) and N-butanoylhomoserine lactone (C4-HSL) produced by the rsmA mutant and the rsmA-overexpressing strain. RsmA exerted a negative effect on the synthesis of both 3-oxo-C12-HSL and C4-HSL, which was confirmed by using lasI and rhlI translational fusions. These data also highlighted the temporal expression control of the lasI gene, which was induced much earlier and to a higher level during the exponential growth phase in an rsmA mutant. To investigate whether RsmA modulates HCN production solely via quorum-sensing control, hcn translational fusions were employed to monitor the regulation of the cyanide biosynthesis genes (hcnABC). RsmA was shown to exert an additional negative effect on cyanogenesis posttranscriptionally by acting on a region surrounding the hcnA ribosome-binding site. This suggests that, in P. aeruginosa, RsmA functions as a pleiotropic posttranscriptional regulator of secondary metabolites directly and also indirectly by modulating the quorum-sensing circuitry.
Resumo:
The global response regulator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the quorum sensing signal molecule N-butanoyl-homoserine-lactone (C4-HSL) and hence the synthesis of several C4-HSL-dependent virulence factors, including hydrogen cyanide (HCN). This study presents evidence that GacA positively influences the transcription of the rhlI gene, specifying C4-HSL synthase, explaining the quorum sensing-dependent transcriptional control of the HCN biosynthetic genes (hcnABC). In addition, GacA was found to modulate hcn gene expression positively at a post-transcriptional level involving the hcnA ribosome-binding site. Thus, the activating effect of GacA on cyanogenesis results from both transcriptional and post-transcriptional mechanisms.
Resumo:
Summary Pseudomonas fluorescens CHAO is a soil bacterium which was isolated near Morens (Switzerland) and which protects plants from root-pathogenic fungi. This protection is due to extracellular secondary metabolites whose synthesis is regulated by the two-component system GacS/GacA in strain CHAO. Extracellular signals of bacterial origin activate this regulatory system. These signals are different from N-acyl-homoserine lactones, are extracted by dichloromethane and appear to have a low molecular weight. Preliminary evidence was obtained from a small molecule m/z 278 produced by strain CHAO. Similar signals capable of activating GacS/GacA-dependent regulation in strain CHAO were found in a large number of different Gram-negative bacteria. Once activated by signal(s), the sensor GacS is assumed to phosphorylate the response regulator GacA, which positively influences a regulatory cascade, resulting in the synthesis of secondary metabolites. This cascade includes three GacA-controlled small regulatory RNAs and two translational repressor proteins. The regulatory RNAs titrate the repressor proteins; this allows translation of target genes and the synthesis of exoenzymes and secondary metabolites such as antibiotics and hydrogen cyanide. A GFP-based sensor for signal detection was constructed in strain CHAO by fusing the gfp reporter gene to the rsmZ small RNA gene. CHAO mutants defective for signal production were isolated following transposon insertion mutagenesis. In one class of mutants obtained, the gacS gene was inactivated, indicating that GacS/GacA positively controls signal production. In a second class, the thiC gene required for thiamine (vitamin B1) biosynthesis was disrupted. Addition of excess (> 10E-6 M) thiamine to the medium restored signal production. By contrast, when the thiamine concentration was just sufficient to allow normal growth, no production of signal(s) was observed. The mechanism by which thiamine activates signal production remains to be elucidated. Résumé Pseudomonas fluorescens CHAO est une bactérie du sol, isolée près de Morens (Suisse), qui a la capacité de protéger les plantes contre des champignons pathogènes de la racine. Cette protection provient de métabolites secondaires excrétés par la bactérie, dont la synthèse est régulée par le système à deux composants GacS/GacA. Des signaux extracellulaires d'origine bactérienne activent ce système de régulation. Ces signaux, différents des N-acyl¬homosérines lactones, sont extraits par le dichlorométhane et semblent avoir une petite masse moléculaire. Une molécule (masse m/z 278) a été mise en évidence par des expériences préliminaires chez la souche CHAO. Des signaux similaires, capables d'activer la régulation dépendante de GacS/GacA chez la souche CHAO, ont été trouvés chez un grand nombre de bactéries à Gram négative. Une fois activé par le(s) signal(aux), le senseur GacS est supposé phosphoryler le régulateur de réponse GacA, qui influence positivement la cascade de régulation menant à la synthèse des métabolites secondaires. Cette cascade inclut trois petits ARNs régulateurs contrôlés par GacA et deux protéines répresseurs de la traduction. Les ARNs régulateurs titrent les protéines répresseurs, ce qui permet la traduction des gènes cibles et la synthèse d'exoenzymes et de métabolites secondaires tel les antibiotiques et le cyanure d'hydrogène. Un senseur basé sur la GFP pour la détection de signaux a été construit dans la souche CHAO en fusionnant le gène rapporteur gfp au gène de petit ARN rsmZ. Des mutants de CHAO déficients pour la production de signaux ont été isolés au moyen d'une mutagenèse par insertion de transposon. Chez une classe de mutants obtenus, le gène gacS a été inactivé, indiquant que GacS/GacA contrôle positivement la production de signaux. Dans une seconde classe, le gène thiC nécessaire à la biosynthèse de thiamine (vitamine B1) a été interrompu. L'addition en excès (> 10E-6 M) de thiamine au milieu restaure la production de signaux. A l'opposé, quand la concentration de thiamine est juste suffisante pour permettre une croissance normale, aucune production de signaux n'a été observée. Le mécanisme par lequel la thiamine active la production de signaux reste à élucider.
Resumo:
Virulence in the opportunistic human pathogen Pseudomonas aeruginosa is controlled by cell density via diffusible signalling molecules ('autoinducers') of the N-acylhomoserine lactone (AHL) type. Two Bacillus sp. isolates (A23 and A24) with AHL-degrading activity were identified among a large collection of rhizosphere bacteria. From isolate A24 a gene was cloned which was similar to the aiiA gene, encoding an AHL lactonase in another Bacillus strain. Expression of the aiiA homologue from isolate A24 in P. aeruginosa PAO1 reduced the amount of the quorum sensing signal N-oxododecanoyl-L-homoserine lactone and completely prevented the accumulation of the second AHL signal, N-butyryl-L-homoserine lactone. This strongly reduced AHL content correlated with a markedly decreased expression and production of several virulence factors and cytotoxic compounds such as elastase, rhamnolipids, hydrogen cyanide and pyocyanin, and strongly reduced swarming. However, no effect was observed on flagellar swimming or on twitching motility, and aiiA expression did not affect bacterial adhesion to a polyvinylchloride surface. In conclusion, introduction of an AHL degradation gene into P. aeruginosa could block cell-cell communication and exoproduct formation, but failed to interfere with surface colonization.
Resumo:
Abstract The plasmid pME6863, carrying the aiiA gene from the soil bacterium Bacillus sp. A24 that encodes a lactonase enzyme able to degrade N-acyl-homoserine lactones (AHLs), was introduced into the rhizosphere isolate Pseudomonas fluorescens P3. This strain is not an effective biological control agent against plant pathogens. The transformant P. fluorescens P3/pME6863 acquired the ability to degrade AHLs. In planta, P. fluorescens P3/pME6863 significantly reduced potato soft rot caused by Erwinia carotovora and crown gall of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. A24. Little or no disease reduction was observed for the wild-type strain P3 carrying the vector plasmid without aiiA. Suppression of potato soft rot was observed even when the AHL-degrading P. fluorescens P3/pME6863 was applied to tubers 2 days after the pathogen, indicating that biocontrol was not only preventive but also curative. When antagonists were applied individually with the bacterial plant pathogens, biocontrol activity of the AHL degraders was greater than that observed with several Pseudomonas 2,4-diacetylphloroglucinol-producing strains and with Pseudomonas chlororaphis PCL1391, which relies on production of phenazine antibiotic for disease suppression. Phenazine production by this well characterized biological control strain P. chlororaphis PCL1391 is regulated by AHL-mediated quorum sensing. When P. chlororaphis PCL1391 was co-inoculated with P. fluorescens P3/pME6863 in a strain mixture, the AHL degrader interfered with the normally excellent ability of the antibiotic producer to suppress tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici. Our results demonstrate AHL degradation as a novel biocontrol mechanism, but also demonstrate the potential for non-target interactions that can interfere with the biocontrol efficacy of other strains.
Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.
Resumo:
In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.