4 resultados para Zp-Extensions
em Université de Lausanne, Switzerland
Resumo:
The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
Bulgaria is historically a multicultural society, composed of the Bulgarian (ethnic) majority and a number of ethnic minorities among which Bulgarian Turks and Roma are the largest. Both minority communities are stigmatized in contemporary Bulgaria, though to different degrees and for different reasons. Ethnic minorities' rights to preserve their culture, customs, and language are a topic of contentious debate. The purpose of this study was to examine individual- and context-level antecedents of the ethnic Bulgarian majority's support for multicultural rights of ethnic minorities. Multilevel regression analyses were conducted with International Social Survey Programme ISSP 2003 data (N = 920 in 28 Bulgarian districts). At the individual-level, an ethnic conception of the nation and anti-Roma symbolic prejudice were negatively related to support for multicultural rights, whereas national identification was positively related to the support of these rights. Over and above individual-level effects, and in line with recent extensions of intergroup contact theory, thepercentage ofBulgarianTurks withindistricts was positively related to support for multicultural rights. Importantly, support for multicultural rights was particularly high in districts characterized by ethnic diversity, that is, in districts with high proportions of both Bulgarian Turks and Roma. The beneficial effects of ethnic diversity and theoretical implications of findings are discussed.