48 resultados para Zero voltage switching

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we analyze a multilingual interaction in a students' working group and hypothesize a correlation between management of languages in interaction and leadership. We consider Codeswitching as one of the most relevant observables in multilingual interaction and attempt to analyze how it is used by speakers. After a brief presentation of three theoretical and analytical conceptions of Code-switching in interaction (Auer, Mondada & Myers Scotton), we define Code-switching as an interactional, strategical, multilingual resource exploited by speakers to achieve various interactionaland non interactional goals. We then show in two CA-like analysis how multilingual strategical resources occur in the interactional practices of the analyzed working group, and how they are exploited by speakers in order to organize interaction, work, tasks, and to construct one's leadership.We also consider the metadiscourses of the students about their own practices and multilingualism in general, in order to confront them to their actual multilingual practices. We draw the hypothesis that discrepancies observed between metadiscourses and practices can be explained through the development of (meta)discourses showing a unilingual conception in describing multilingual practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Patients with rheumatoid arthritis (RA) with an inadequate response to TNF antagonists (aTNFs) may switch to an alternative aTNF or start treatment from a different class of drugs, such as rituximab (RTX). It remains unclear in which clinical settings these therapeutic strategies offer most benefit. OBJECTIVE: To analyse the effectiveness of RTX versus alternative aTNFs on RA disease activity in different subgroups of patients. METHODS: A prospective cohort study of patients with RA who discontinued at least one aTNF and subsequently received either RTX or an alternative aTNF, nested within the Swiss RA registry (SCQM-RA) was carried out. The primary outcome, longitudinal improvement in 28-joint count Disease Activity Score (DAS28), was analysed using multivariate regression models for longitudinal data and adjusted for potential confounders. RESULTS: Of the 318 patients with RA included; 155 received RTX and 163 received an alternative aTNF. The relative benefit of RTX varied with the type of prior aTNF failure: when the motive for switching was ineffectiveness to previous aTNFs, the longitudinal improvement in DAS28 was significantly better with RTX than with an alternative aTNF (p = 0.03; at 6 months, -1.34 (95% CI -1.54 to -1.15) vs -0.93 (95% CI -1.28 to -0.59), respectively). When the motive for switching was other causes, the longitudinal improvement in DAS28 was similar for RTX and alternative aTNFs (p = 0.40). These results were not significantly modified by the number of previous aTNF failures, the type of aTNF switches, or the presence of co-treatment with a disease-modifying antirheumatic drug. CONCLUSION: This observational study suggests that in patients with RA who have stopped a previous aTNF treatment because of ineffectiveness changing to RTX is more effective than switching to an alternative aTNF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores-the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric N-player matrix games with two pure strategies. In such games, gains from switching strategies depend, in general, on how many other individuals in the group play a given strategy. As a consequence, the gain function determining the gradient of selection can be a polynomial of degree N-1. In order to deal with the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on the one hand and the number and stability of the rest points of the replicator dynamics on the other hand. While this relationship is a general one, it is most informative if gains from switching have at most two sign changes, as is the case for most multi-player matrix games considered in the literature. We demonstrate that previous results for public goods games are easily recovered and extended using this observation. Further examples illustrate how focusing on the sign pattern of the gains from switching obviates the need for a more involved analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the first steps of reverse transcription of the retroviral genome, sequences present at the extremities of the RNA are used to reconstitute a host cell PolII promoter. The assembly of the promoter occurs by template switching, which takes advantage of a direct repeat at the ends of the RNA molecule. These steps are catalysed by the viral reverse transcriptase, which carries an intrinsic RNaseH activity that is probably also involved therein. To study the role of the RNaseH activity in this first template-switching event, an in vitro system has been developed based on primer extensions of synthetic RNAs. When an RNA was reverse transcribed with wild-type reverse transcriptase in the presence of a second RNA the 3' part of which was repeated at the 5' end of the first one, extension products could be observed corresponding to a chimeric cDNA comprising both RNA species. This template switching could not be detected when a mutant reverse transcriptase lacking the RNaseH activity was used. The results show that the RNaseH activity is needed to remove the 5' RNA sequences from the cDNA:RNA hybrid thereby enabling its translocation to another RNA containing an appropriate complementary target sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim: Neuropathic pain (NP) is a frequent and disabling disorder occurring as a consequence of a direct lesion of the nervous system and recurrently associated with a positive shift toward nervous system excitability. Peripheral nerve activity is mainly carried by voltage-gated sodium channels (VGSC), with Nav1.7 isoform being an important candidate since loss of function mutations of its gene is associated with congenital inability to experience pain. Interestingly, ubiquitin ligases from the Nedd4 family are well known proteins that regulate the turnover of many membrane proteins such as VGSC and we showed Nedd2-2 is downregualted in experimental models of chronic pain. The aim of this study was to investigate the importance of Nedd4-2 in the modulation of Nav1.7 at the membrane. Methods: In vitro: whole cell patch clamp on HEK293 cell line stably expressing Nav1.7 was used to record sodium currents (INa), where the peak current of INa reflects the quantity of functional Nav1.7 expressed at the membrane. The possibility that Nedd4-2 modulates the currents was assessed by investigating the effect of its cotransfection on INa. Biotinylation of cell surface was used to isolate membrane-targeted Nav1.7. Furthermore, as the interaction between Nedd4-2 and Nav isoforms was previously reported to rely on an xPPxYx sequence (PY-motif), we mutated this latter to study its impact in the specific interaction between Nav1.7 and Nedd4-2. GST-fusion proteins composed of the Nav1.7 c terminal 66 amino acids (wild-type or PY mutated) and GST were used to pull-down Nedd4-2 from lysates. Results: Co-transfection of Nav1.7 with Nedd4-2 reduced the Nav1.7 current amplitude by ~80% (n = 36, p <0.001), without modifying the biophysical properties of INa. In addition, we show that the quantity of Nav1.7 at the membrane was decreased when Nedd4-2 was present. This effect was dependent on the PY-motif since mutations in this sequence abolished the down-regulatory effect of Nedd4-2. The importance of this motif was further confirmed by pull down experiments since the PY mutant completely eliminate the interaction with Nedd4-2. Perspectives: Altogether, these results point to the importance of Nedd4-2 as a Nav1.7 regulator through cell surface modulation of this sodium channel. Further experiments in freshly dissociated neurons from wild type and Scn1bflox/Nedd4-2Cre mice are needed to confirm in vivo these preliminary data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we analyze a multilingual interaction in a students' working group and hypothesize a correlation between management of languages in interaction and leadership. We consider Codeswitching as one of the most relevant observables in multilingual interaction and attempt to analyze how it is used by speakers. After a brief presentation of three theoretical and analytical conceptions of Code-switching in interaction (Auer, Mondada & Myers Scotton), we define Code-switching as an interactional, strategical, multilingual resource exploited by speakers to achieve various interactional and non interactional goals. We then show in two CA-like analysis how multilingual strategical resources occur in the interactional practices of the analyzed working group, and how they are exploited by speakers in order to organize interaction, work, tasks, and to construct one's leadership. We also consider the metadiscourses of the students about their own practices and multilingualism in general, in order to confront them to their actual multilingual practices. We draw the hypothesis that discrepancies observed between metadiscourses and practices can be explained through the development of (meta)discourses showing a unilingual conception in describing multilingual practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathological brain states are known to induce massive production of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα). At much lower levels, these cytokines are also present in the healthy brain, where it is increasingly being recognized that they exert regulatory influences. Recent studies suggest that TNFα plays important roles in controlling synaptic transmission and plasticity. Here, we discuss the evidence in support of synaptic regulation by TNFα and the underlying cellular mechanisms, including control of AMPA receptor trafficking and glutamate release from astrocytes. These findings suggest that increases in TNFα levels (caused by nervous system infection, injury, or disease) transform the physiological actions of the cytokine into deleterious ones. This functional switch may contribute to cognitive alterations in several brain pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With aging, bimanual movements are performed with increased cerebral activity in frontal and parietal areas. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. In this study, spontaneous electroencephalographic activity (EEG) was recorded while 39 young participants (YP) and 37 elderly (EP) performed motor transitions from unimanual tapping to symmetric bimanual tapping (= Activation), and opposite (= Inhibition). We measured the delay of switching using the mean and standard deviation of transition time (meanTT and sdTT). Task-related power (TRPow) in alpha frequency band (8-12Hz) was used to measure electro-cortical changes, negative values corresponding to increased cerebral activity. A balance index (BI) was computed between frontal and parietal regions, values non-significantly different from "zero" representing a comparable level of cerebral activity in these regions. The results reveal higher sdTT 1) in EP compared to YP in both transitions, 2) in Activation compared to Inhibition in both groups. TRPow tends to reach greater negative values (p=0.052) in EP compared to YP in both tapping modes and both motor transitions. Furthermore, the results show more negative TRPow 1) in both motor transitions compared to the tapping movements and 2) in frontal region for YP compared to EP during Inhibition only. BI values differ significantly from "zero" for YP in Inhibition only. In conclusion, motor transitions are more variable and tend to be resource-consuming in the elderly. Moreover, the cerebral activity spreading in EP characterized by similar level of activity between frontal and parietal regions suggest reduced capacity to recruit specialized neural mechanisms during motor inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca(2+) permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca(2+) or Na(+) ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca(2+) permeability, suggesting that ion-toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le fonctionnement du système nerveux est sensible aux variations de la concentration d'acide. Une acidification des tissus peut se produire pendant une activité neuronale intense ou dans des situations physiopathologiques telles que l'inflammation ou les lésions cérébrales. Les canaux ioniques sensibles à l'acide (ASIC) sont activés par acidification et jouent un rôle important dans la détection des changements d'acide. Les ASICs contribuent à la dégénérescence neuronale après une lésion cérébrale, puisque leur inhibition limite la lésion neuronale. L'acidification induite par une inflammation du tissu nerveux conduit à des stimuli de douleur, qui sont détectés par ces canaux. En effet, les toxines qui bloquent spécifiquement les ASICs montrent des effets analgésiques dans des modèles animaux. La structure 3D d'ASIC peut être comparée à une main qui tient une boule entre son pouce et le doigt. Les différents domaines d'ASIC sont appelés doigt, pouce, jointure, boule-ß et paume. Les domaines transmembranaires représentent le poignet de cette main. Mon projet de thèse vise à décrire les mouvements survenant sur ce canal pendant son activité. A cet effet, j'ai utilisé une technique combinée qui permet la mesure des mouvements en temps réel durant l'activité du canal. J'ai montré les réarrangements des domaines extracellulaires pendant l'activité ASIC. Ces mouvements sont transmis au pore du canal, ou ils contrôlent sa fermeture et ouverture. La direction de ces mouvements a été évaluée pour les domaines doigt et jointure, et nous avons montré qu'ils s'éloignent de la boule-ß lors de l'acidification. J'ai également été en mesure de décrire les mouvements qui se produisent dans la poche acidique, une zone qui est considérée comme importante, car elle représente le site de liaison de certaines toxines de venin qui agissent sur les ASICs. J'ai ainsi pu montrer que les domaines doigt et le pouce qui forment la poche acidique se rapprochent l'un de l'autre pendant l'activation du canal. Ces résultats sont en accord avec des observations précédentes réalisées sur les ASICs par d'autres chercheurs. Enfin, cette analyse approfondie permet d'améliorer les connaissances sur le contrôle de l'activité ASIC; de plus, les mécanismes trouvés ici sont probablement partagés entre les canaux de la famille à laquelle appartiennent les ASICs. -- Les acid-sensing ion channels (ASICs) sont des canaux sodiques ouverts par les protons et principalement exprimés dans le système nerveux. Ils sont impliqués dans la détection des protons dans de nombreux états physiologiques et pathologiques comme l'ischémie et la perception de la douleur. La structure cristalline de l'isoforme ASIC1 de poulet a été déterminée dans l'état désensibilisé et ouvert. Les études fonctionnelles indiquent que la protonation des résidus clés dans la boucle extracellulaire déclenche des changements de conformation conduisant à l'ouverture du canal. Cependant, les mécanismes moléculaires qui relient la protonation à l'ouverture et la fermeture du canal n'ont pas encore été clarifiés. Dans cette étude, nous avons utilisé la voltage-clamp fluorimétrie (VCF) pour révéler les mouvements de l'activité associée qui se produisent dans les différents domaines de l'ASICla. Les fluorophores positionnés dans le pouce, la paume, le doigt, l'articulation et dans les domaines de l'entrée du pore extracellulaire ont montré des signaux de VCF liés à des changements de conformation au cours de l'activité du canal. La synchronisation des changements de fluorescence indique une séquence complexe de mouvements en fonction du pH. La cinétique de la fluorescence et des signaux de courant ont été comparés les uns aux autres afin de déterminer si le mouvement détecté par le signal de fluorescence correspond à une transition fonctionnelle définie du canal. Certains des résidus testés se sont révélés être étroitement liés à la désensibilisation du canal ou au rétablissement après la désensibilisation. En outre, nous avons trouvé qu'un tryptophane endogène de la boule-ß diminue le signal de fluorescence des sondes positionnées dans les domaines doigt et jointure. L'augmentation observée de ces signaux indique que ces domaines s'éloignent à une distance à partir de la boucle de la boule-ß. Sur la base de ce principe, nous avons généré des paires Trp-Cys « quencher», dans lequel le Cys est utilisé comme site d'ancrage pour attacher le fluorophore. Ensuite, nous avons évalué les changements de conformation qui se produisent au niveau de la poche acide, une zone importante pour la fonction et la régulation d'ASIC. Les signaux de fluorescence indiquent un mouvement de l'hélice supérieure du pouce vers le doigt et une rotation de la boule-ß dans le sens horaire. L'analyse de la cinétique indique que les mouvements des sous-domaines qui composent la poche acide se produisent pendant la désensibilisation du canal. Mon projet de doctorat représente la première analyse approfondie des changements conformationnels dépendants de l'activité des ASICs et fournit des informations sur les mécanismes de contrôle de l'activité du canal qui sont probablement partagés avec d'autres canaux proches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS: Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS: The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS: The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.