34 resultados para Y chromosome material

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We constructed a microsatellite library from four Crocidura russula Y chromosome-specific bacterial artificial chromosome (BAC) clones. Only one of eight microsatellites was male-specific, despite genome walking to obtain more flanking sequence and testing of 93 primer combinations. Potential reasons for this low success are discussed. The male-specific locus, CRY3, was genotyped in 90 males, including C. russula from across the species range and two related species. The large difference in CRY3 allele size between eastern and western lineages supports earlier reports of high divergence between them. Despite polymorphism of CRY3 in Morocco, only one allele was found throughout the whole of Europe, consistent with previous studies that suggest recent colonization of Europe from a small number of Moroccan founders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to characterise the amount of variation on the mammalian Y chromosome in order to assess its potential for use in evolutionary studies. We report very low levels of polymorphism on the Y chromosome of Saudi-Arabian hamadryas baboons, Papio hamadryas hamadryas. We found no segregating sites on the Y, despite sequence analysis of 3 kb noncontiguous intron sequence in 16 males with divergent autosomal microsatellite genotypes, and a further analysis of 1.1 kb intron sequence in 97 males from four populations by SSCP. In addition, we tested seven human-derived Y-linked microsatellites in baboons. Only four of these loci were male-specific and only one was polymorphic in our 97 male sample set. Polymorphism on the Y chromosome of Arabian hamadryas appears to be low compared to other primate species for which data are available (eg humans, chimpanzees and bonobos). Low effective population size (Ne) of paternal genes due to polygyny and female-biased adult sex ratio is a potential reason for low Y chromosome variation in this species. However, low Ne for the Y should be counterbalanced to some extent by the species' atypical pattern of male philopatry and female-biased dispersal. Allelic richness averaged over seven loci was not significantly different between an African and an Arabian population, suggesting that loss of variation during the colonisation of Arabia does not explain low Y variation. Finally, in the absence of nucleotide polymorphism, it is unclear to what extent selection could be responsible for low Y variation in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several hypotheses have been elaborated to account for the evolutionary decay commonly observed in full-fledged Y chromosomes. Enhanced drift, background selection and selective sweeps, which are expected to result from reduced recombination, may all share responsibilities in the initial decay of proto-Y chromosomes, but little empirical information has been gathered so far. Here we take advantage of three markers that amplify on both of the morphologically undifferentiated sex chromosomes of the European tree frog (Hyla arborea) to show that recombination is suppressed in males (the heterogametic sex) but not in females. Accordingly, genetic variability is reduced on the Y, but in a way that can be accounted for by merely the number of chromosome copies per breeding pair, without the need to invoke background selection or selective sweeps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the evolutionary history of the greater white-toothed shrew across its distribution in northern Africa and mainland Europe using sex-specific (mtDNA and Y chromosome) and biparental (X chromosome) markers. All three loci confirm a large divergence between eastern (Tunisia and Sardinia) and western (Morocco and mainland Europe) lineages, and application of a molecular clock to mtDNA divergence estimates indicates a more ancient separation (2.25 M yr ago) than described by some previous studies, supporting claims for taxonomic revision. Moroccan ancestry for the mainland European population is inconclusive from phylogenetic trees, but is supported by greater nucleotide diversity and a more ancient population expansion in Morocco than in Europe. Signatures of rapid population expansion in mtDNA, combined with low X and Y chromosome diversity, suggest a single colonization of mainland Europe by a small number of Moroccan shrews >38 K yr ago. This study illustrates that multilocus genetic analyses can facilitate the interpretation of species' evolutionary history but that phylogeographic inference using X and Y chromosomes is restricted by low levels of observed polymorphism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. RESULTS: A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea.A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area.Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the translocation t(9;22)(q34;q11) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations and mutations and thereby progression to accelerated phase (AP) and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show additional alterations at diagnosis. This proportion rises during the course of the disease up to 80% in BC. Acquisition of chromosomal changes during treatment is considered as a poor prognostic indicator, whereas the impact of chromosomal aberrations at diagnosis depends on their type. Patients with major route additional chromosomal alterations (major ACA: +8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11) have a worse outcome whereas patients with minor route ACA show no difference in overall survival (OS) and progression-free survival (PFS) compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). However, the impact of balanced vs. unbalanced (gains or losses of chromosomes or chromosomal material) karyotypes at diagnosis on prognosis of CML is not clear yet. Patients and methods: Clinical and cytogenetic data of 1346 evaluable out of 1544 patients with Philadelphia and BCR-ABL positive CP CML randomized until December 2011 to the German CML-Study IV, a randomized 5-arm trial to optimize imatinib therapy by combination, or dose escalation and stem cell transplantation were investigated. There were 540 females (40%) and 806 males (60%). Median age was 53 years (range, 16-88). The impact of additional cytogenetic aberrations in combination with an unbalanced or balanced karyotype at diagnosis on time to complete cytogenetic and major molecular remission (CCR, MMR), PFS and OS was investigated. Results: At diagnosis 1174/1346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). In 64 of 75 patients with t(v;22), only one further chromosome was involved in the translocation; In 8 patients two, in 2 patients three, and in one patient four further chromosomes were involved. Ninety seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had major or minor ACA. Thirty six of the 53 patients (2.7%) had an unbalanced karyotype (including all patients with major route ACA and patients with other unbalanced alterations like -X, del(1)(q21), del(5)(q11q14), +10, t(15;17)(p10;p10), -21), and 17 (1.3%) a balanced karyotype with reciprocal translocations [e.g. t(1;21); t(2;16); t(3;12); t(4;6); t(5;8); t(15;20)]. After a median observation time of 5.6 years for patients with t(9;22), t(v;22), -Y, balanced and unbalanced karyotype with ACA median times to CCR were 1.05, 1.05, 1.03, 2.58 and 1.51 years, to MMR 1.31, 1.51, 1.65, 2.97 and 2.07 years. Time to CCR and MMR was longer in patients with balanced karyotypes (data statistically not significant). 5-year PFS was 89%, 78%, 87%, 94% and 69% and 5-year OS 91%, 87%, 89%, 100% and 73%, respectively. In CML patients with unbalanced karyotype PFS (p<0.001) and OS (p<0.001) were shorter than in patients with standard translocation (or balanced karyotype; p<0.04 and p<0.07, respectively). Conclusion: We conclude that the prognostic impact of additional cytogenetic alterations at diagnosis of CML is heterogeneous and consideration of their types may be important. Not only patients with major route ACA at diagnosis of CML but also patients with unbalanced karyotypes identify a group of patients with shorter PFS and OS as compared to all other patients. Therefore, different therapeutic options such as intensive therapy with the most potent tyrosine kinase inhibitors or stem cell transplantation are required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Allogeneic bone marrow donors can be incompatible at different levels. Even HLA-identical pairs will be still incompatible for numerous minor histocompatibility antigens (mHag). Nevertheless, some incompatibilities are found to be associated with an increased risk of graft-versus-host disease (GVHD), which could be related to the way the immune system recognizes these antigens. METHODS: We determined the specificity of cytotoxic T-cell clones isolated during acute GVHD or during bone marrow graft rejection in patients (n=14) transplanted with marrow from donors who were histoincompatible for different minor and/or major histocompatibility antigens. RESULTS: We found a clear hierarchy among the different types of histoincompatibilities. In three combinations mismatched for a class I allele, all 27 clones isolated during GVHD were specific for the incompatible HLA molecule. In the 11 class I-identical combinations, 14 different mHags were recognized. The mHag HA-1, known to have a significant impact on the development of GVHD, was recognized in the two HA-1-incompatible combinations. In one of these combinations, which was sex mismatched, all 56 clones analyzed were directed against HA-1, demonstrating the dominance of this mHag. In the four HA-1-compatible, sex-mismatched combinations, the anti-H-Y response was directed against one immunodominant epitope rather than against multiple Y-chromosome-encoded epitopes. All male specific cytotoxic T lymphocytes (n=15) recognized the same high-performance liquid chromatography-purified peptide fraction presented by T2 cells. Moreover, all cytotoxic T lymphocytes tested (n=6) were specific for the SMCY-derived peptide FIDSYICQV, originally described as being the H-Y epitope recognized in the context of HLA-A*0201. CONCLUSIONS: Some histocompatibility antigens are recognized in an immunodominant fashion and will therefore be recognized in the majority of mismatched combinations. Only for such antigens, correlations between mismatches and the occurrence of GVHD or graft rejections will be found.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RÉSUMÉ : Le sexe des individus peut être déterminé par l'environnement ou la génétique. Lorsque la détermination du sexe est génétique, il y a dans le génome, la présence de chromosomes spécifiques qui détermineront le sexe. Dans cette thèse, j'ai étudié l'évolution des chromosomes sexuels et dans quel contexte des marqueurs sur ces chromosomes peuvent être utilisés. Pour explorer la formation du chromosome Y, nous avons étudié les caractéristiques des chromosomes sexuels chez la rainette verte, Hyla arborea. Dans un premier temps, nous avons utilisé un marqueur situé sur les chromosomes sexuels X et Y chez plusieurs espèces appartenant au groupe de la rainette verte. Cela nous a permis de révéler chez toutes ces espèces une hétérogamétie mâle. Dans un deuxième temps, nous avons tiré profit de deux autres marqueurs situés sur les chromosomes sexuels pour montrer que la recombinaison est supprimée chez les mâles mais pas chez les femelles. Pour expliquer la réduction de la variabilité sur le chromosome Y, il n'est pas nécessaire d'invoquer le balayage sélectif ou la sélection d'arrière-plan : le nombre de copies plus petit du chromosome Y dans le génome et l'absence de recombinaison suffisent à l'expliquer. Nous avons également analysé plus en détail la suppression de la recombinaison chez les mâles de H. arborea. Les modèles classiques de l'évolution des chromosomes sexuels supposent que la taille de la région non-recombinante augmente progressivement pendant l'évolution du chromosome Y, due à l'accumulation de changements structuraux. Dans cette étude, nous montrons un modèle différent, à savoir que la recombinaison est supprimée ou diminuée non seulement sur les chromosomes sexuels mais aussi sur les autosomes chez les mâles, dû à l'action de modificateurs généraux. En utilisant des marqueurs localisés sur le chromosome Y, ainsi que sur l'ADN mitochondrial et le chromosome X, nous avons étudié l'histoire évolutive de la musaraigne musette, Crocidura russula. Cette étude illustre que les analyses génétiques avec plusieurs types de marqueurs génétiques peuvent faciliter l'interprétation de l'histoire évolutive des espèces, mais que l'utilisation des marqueurs sur les chromosomes X et Y pour des études phylogéographiques est limitée par le peu de polymorphisme observé sur ces deux types de marqueurs. Le même jeu de données combiné avec des simulations a été employé pour comprendre les facteurs responsables de la faible variabilité sur le chromosome Y qui peut être expliqué, dans notre étude, par la démographie et les traits d'histoire de vie de C. russula. SUMMARY The sex of an individual is determined either by its environment or its genetics. Genetic sex determination relies on the presence of specific chromosomes that will determine the sex of their bearer. In this thesis, I studied the evolution of the sex chromosomes and the context in which markers on this type of chromosomes can be used. To explore the evolution of a Y chromosome, we studied the nascent sex chromosomes in the European tree frog Hyla arborea. First; we amplified a sex specific marker in several related species of European tree frog and found a homogeneous pattern of male heterogamety. Secondly, we used two additional sex-specific markers to show that recombination is suppressed in males but not in females. There is, therefore, no need to invoke background selection or selective sweeps to explain the reduced genetic variability on the Y chromosome, because the lower number of copies of the Y chromosomes per breeding pair and the absence of recombination are sufficient. To further analyze the suppression of recombination in male European. tree frogs, we constructed a microsatellite linkage map for this species. Classical models of sex-chromosome evolution assume that the non-recombining region expands progressively during the long-term evolution of the Y chromosome, owing to the accumulation of structural changes. Here we show a strikingly different pattern: recombination is suppressed or depressed both on sex chromosomes and autosomes in the heterogametic sex, presumably due to the action of general modifiers. We investigated the evolutionary history of the greater white-toothed shrew, Crocidura russula, using markers on both sex chromosomes and mtDNA. This study illustrates that multilocus genetic analyses facilitates the interpretation of a species' evolutionary history. It also demonstrates that phylogeographic inferences from X and Y chromosomal markers are restricted by the low levels of observed polymorphism. Combining this genetic study with simulations, we determined that the demography and the life-history traits of this species can alone be responsible for the low Y diversity. In conclusion, this thesis shows that sex chromosomes, in combination with autosomes or mtDNA, are necessary to understand the evolution of sex chromosomes and to precisely infer the population history of a species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using one male-inherited and eight biparentally inherited microsatellite markers, we investigate the population genetic structure of the Valais chromosome race of the common shrew (Sorex araneus) in the Central Alps of Europe. Unexpectedly, the Y-chromosome microsatellite suggests nearly complete absence of male gene flow among populations from the St-Bernard and Simplon regions (Switzerland). Autosomal markers also show significant genetic structuring among these two geographical areas. Isolation by distance is significant and possible barriers to gene flow exist in the study area. Two different approaches are used to better understand the geographical patterns and the causes of this structuring. Using a principal component analysis for which testing procedure exists, and partial Mantel tests, we show that the St-Bernard pass does not represent a significant barrier to gene flow although it culminates at 2469 m, close to the highest altitudinal record for this species. Similar results are found for the Simplon pass, indicating that both passes represented potential postglacial recolonization routes into Switzerland from Italian refugia after the last Pleistocene glaciations. In contrast with the weak effect of these mountain passes, the Rhône valley lowlands significantly reduce gene flow in this species. Natural obstacles (the large Rhône river) and unsuitable habitats (dry slopes) are both present in the valley. Moreover, anthropogenic changes to landscape structures are likely to have strongly reduced available habitats for this shrew in the lowlands, thereby promoting genetic differentiation of populations found on opposite sides of the Rhône valley.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alleles and haplotypes frequencies for 10 Y-chromosome STR loci (DYS19, DYS385 I/II, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438 and DYS439), included in the Y-Plex6 and Y-Plex5 kits were determined for a Tunisian population sample of 100 male individuals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new study in Caenorhabditis elegans shows that homologous autosomes segregate non-randomly with the sex chromosome in the heterogametic sex. Segregation occurs according to size, small autosomes segregating with, and large autosomes segregating away from the X-chromosome. Such sex-biased transmission of autosomes could facilitate the spread of sexually antagonistic alleles whose effects favor the fitness of one sex at the expense of the other. This may provide a first step toward the evolution of new sex determination systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The common shrew Sorex araneus Linnaeus, 1758 is subject to intense chromosomal polymorphism. About 65 chromosome races are presently known. One of these chromosome races (the Valais race) is karyologically, morphologically, biochemically, and genetically clearly distinct from all other chromosome races of the species. Recent studies of hybrid zones between the Valais race and other chromosome races in the Swiss and French Alps add further strong evidence for the specific taxonomic status of the Valais race. Chromosomes and diagnostic protein markers reveal sharp frequency clines and strong heterozygote deficits. In one hybrid zone, the maintenance of the strong genetic differentiation of the hybridizing taxa was confirmed by a study with autosomal microsatellites indicating minimal gene flow. A microsatellite marker on the Y-chromosome showed complete absence of male mediated gene flow suggesting hybrid male sterility. To clarify the taxonomic status of this taxon, additional analyses were conducted. A morphometric analysis of the mandible indicated the Valais race is morphologically as distinct from neighbouring chromosome races of S. araneus as from other related Sorex species. In a phylogeny based on complete mitochondrial DNA cytochrome b gene sequences, the Valais race clearly appears as the sister taxon to all other races of S. araneus. Therefore, the chromosome race Valais of S. araneus herein is elevated to specific status and the name Sorex antinorii Bonaparte, 1840 is applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.