172 resultados para X-LINKED INHERITANCE

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic evaluation using animal models or pedigree-based models generally assume only autosomal inheritance. Bayesian animal models provide a flexible framework for genetic evaluation, and we show how the model readily can accommodate situations where the trait of interest is influenced by both autosomal and sex-linked inheritance. This allows for simultaneous calculation of autosomal and sex-chromosomal additive genetic effects. Inferences were performed using integrated nested Laplace approximations (INLA), a nonsampling-based Bayesian inference methodology. We provide a detailed description of how to calculate the inverse of the X- or Z-chromosomal additive genetic relationship matrix, needed for inference. The case study of eumelanic spot diameter in a Swiss barn owl (Tyto alba) population shows that this trait is substantially influenced by variation in genes on the Z-chromosome (sigma(2)(z) = 0.2719 and sigma(2)(a) = 0.4405). Further, a simulation study for this study system shows that the animal model accounting for both autosomal and sex-chromosome-linked inheritance is identifiable, that is, the two effects can be distinguished, and provides accurate inference on the variance components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with defective ectodysplasin A (EDA) are affected by X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by sparse hair, inability to sweat, decreased lacrimation, frequent pulmonary infections, and missing and malformed teeth. The canine model of XLHED was used to study the developmental impact of EDA on secondary dentition, since dogs have an entirely brachyodont, diphyodont dentition similar to that in humans, as opposed to mice, which have only permanent teeth (monophyodont dentition), some of which are very different (aradicular hypsodont) than brachyodont human teeth. Also, clinical signs in humans and dogs with XLHED are virtually identical, whereas several are missing in the murine equivalent. In our model, the genetically missing EDA was compensated for by postnatal intravenous administration of soluble recombinant EDA. Untreated XLHED dogs have an incomplete set of conically shaped teeth similar to those seen in human patients with XLHED. After treatment with EDA, significant normalization of adult teeth was achieved in four of five XLHED dogs. Moreover, treatment restored normal lacrimation and resistance to eye and airway infections and improved sweating ability. These results not only provide proof of concept for a potential treatment of this orphan disease but also demonstrate an essential role of EDA in the development of secondary dentition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the phenotype of patients in a large 3 generation Swiss family with X-linked retinitis pigmentosa (XLRP) due to a novel nonsense mutation Glu20stop in RP2 gene and to correlate with the genotype. Methods: 6 affected patients (1 male, 5 females, age range: 23 - 73 years) were assessed with a complete ophthalmologic examination. All had fundus autofluorescence images, standardised electroretinography, Goldmann visual fields and Optical Coherence Tomography. In addition, medical records of 2 affected male patients were reviewed. Blood sample was taken for molecular analysis. Results: The male patients were severely affected at a young age with early macular involvement. The youngest 23 y old male had also high myopia and vision of less than 0.05 according to Snellen EDTRS chart bilaterally. All 5 female carriers had some degree of rod-cone dystrophy, but no macular involvement. The visual acuity was 1.0 in the younger carriers, while the 73 years old had VA of 0.5. Two females had mild myopia (range -0.75 to -2) and one had anisometropia of 3.5D, with the more severely affected eye being myopic. Three out of 5 female carriers had optic nerve drusen. Conclusions: We report a novel Glu20stop mutation in RP2 gene, which is a rare cause of XLRP. Our description of severe phenotype in male patients with high myopia and early macular atrophy confirms previous reports. Unlike previous reports, all our female carriers had RP, but not macular involvement or high myopia. The identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with defective ectodysplasin A (EDA) have X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM#305100), a condition comprising hypotrichosis, inability to sweat, abnormal teeth, and frequent pulmonary infections. The XLHED dogs show the same clinical signs as humans with the disorder, including frequent respiratory infections that can be fatal. The respiratory disease in humans and dogs is thought to be due to the absence of tracheal and bronchial glands which are a vital part of the mucociliary clearance mechanism. In our XLHED model, the genetically missing EDA was replaced by postnatal intravenous administration of recombinant EDA resulting in long-term, durable corrective effect on adult, permanent dentition. After treatment with EDA, significant correction of the missing tracheal and bronchial glands was achieved in those dogs that received higher doses of EDA. Moreover, successful treatment resulted in the presence of esophageal glands, improved mucociliary clearance, and the absence of respiratory infection. These results demonstrate that a short-term treatment at a neonatal age with a recombinant protein can reverse a developmental disease and result in vastly improved quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the epithelial morphogen ectodysplasin-A (EDA), a member of the tumor necrosis factor (TNF) family, are responsible for the human disorder X-linked hypohidrotic ectodermal dysplasia (XLHED) characterized by impaired development of hair, eccrine sweat glands, and teeth. EDA-A1 and EDA-A2 are two splice variants of EDA, which bind distinct EDA-A1 and X-linked EDA-A2 receptors. We identified a series of novel EDA mutations in families with XLHED, allowing the identification of the following three functionally important regions in EDA: a C-terminal TNF homology domain, a collagen domain, and a furin protease recognition sequence. Mutations in the TNF homology domain impair binding of both splice variants to their receptors. Mutations in the collagen domain can inhibit multimerization of the TNF homology region, whereas those in the consensus furin recognition sequence prevent proteolytic cleavage of EDA. Finally, a mutation affecting an intron splice donor site is predicted to eliminate specifically the EDA-A1 but not the EDA-A2 splice variant. Thus a proteolytically processed, oligomeric form of EDA-A1 is required in vivo for proper morphogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nascent sex chromosomes offer a unique opportunity to investigate the evolutionary fate of genesrecently trapped in non-recombining segments. A housekeeping gene (MED15) was recently shown to lie on the nascent sex-chromosomes of the European tree frog (Hyla arborea), with different alleles fixed on the X and the Y chromosomes. Here we document a polymorphism (glutamine deletion) in the X copy of the gene, and use population surveys and experimental crosses to test whether this polymorphism is neutral or maintained by sex-antagonistic selection. Tadpoles from parents of known genotypes revealed significant discrepancies from Mendelian inheritance, suggesting possible sex-antagonistic effects under laboratory conditions. Quantitatively, however, these effects did not meet the conditions for polymorphism maintenance. Furthermore, field estimates of female genotypic frequencies did not differ from Hardy-Weinberg equilibrium and allelic frequencies on the X chromosome did not differ between sexes. In conclusion, although sex antagonistic effects cannot be excluded given the laboratory conditions, the X-linked polymorphism under study appears neutral in the wild. Alternatively, sex-antagonistic selection might still account for the fixation of a male specific allele on the Y chromosome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and resultant transcriptional silencing. FMR1 silencing has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Primary ciliary dyskinesia (PCD) is characterised by recurrent infections of the upper respiratory airways (nose, bronchi, and frontal sinuses) and randomisation of left-right body asymmetry. To date, PCD is mainly described with autosomal recessive inheritance and mutations have been found in five genes: the dynein arm protein subunits DNAI1, DNAH5 and DNAH11, the kinase TXNDC3, and the X-linked retinitis pigmentosa GTPase regulator RPGR. METHODS: We screened 89 unrelated individuals with PCD for mutations in the coding and splice site regions of the gene DNAH5 by denaturing high performance liquid chromatography (DHPLC) and sequencing. Patients were mainly of European origin and were recruited without any phenotypic preselection. RESULTS: We identified 18 novel (nonsense, splicing, small deletion and missense) and six previously described mutations. Interestingly, these DNAH5 mutations were mainly associated with outer + inner dyneins arm ultrastructural defects (50%). CONCLUSION: Overall, mutations on both alleles of DNAH5 were identified in 15% of our clinically heterogeneous cohort of patients. Although genetic alterations remain to be identified in most patients, DNAH5 is to date the main PCD gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary : Internal ribosome entry sites (IRES) are used by viruses as a strategy to bypass inhibition of cap-dependent translation that commonly results from viral infection. IRES are also used in eukaryotic cells to control mRNA translation under conditions of cellular stress (apoptosis, heat shock) or during the G2 phase of the cell cycle when general protein synthesis is inhibited. Variation in cellular expression levels has been shown to be inherited. Expression is controlled, among others, by transcriptional factors and by the efficiency of cap-mediated translation and ribosome activity. We aimed at identifying genomic determinants of variability in IRES-mediated translation of two representative IRES [Encephalomyocarditis virus (EMCV) and X-linked Inhibitor-of-Apoptosis (XIAP) IRES]. We used bicistronic lentiviral constructions expressing two fluorescent reporter transgenes. Lentiviruses were used to transduce seven different laboratory cell lines and B lymphoblastoid cell lines from the Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209); representing an in vitro approach to family structure allowing genome scan analyses. The relative expression of the two markers was assessed by FACS. IRES efficiency varies according to cellular background, but also varies, for a same cell type, among individuals. The control of IRES activity presents an inherited component (h2) of 0.47 and 0.36 for EMCV and XIAP IRES, respectively. A genome scan identified a suggestive Quantitative Trait Loci (LOD 2.35) involved in the control of XIAP IRES activity. Résumé : Les sites internes d'entrée des ribosomes (IRES = internal ribosome entry sites) sont utilisés par les virus comme une stratégie afin d'outrepasser l'inhibition de traduction qui résulte communément d'une infection virale. Les IRES sont également utilisés par les cellules eucaryotes pour contrôler la traduction de l'ARN messager dans des conditions de stress cellulaire (apoptose, choc thermique) ou durant la phase G2 du cycle cellulaire, situations durant lesquelles la synthèse générale des protéines est inhibée. La variation des niveaux d'expression cellulaire de transcription est un caractère héréditaire. L'expression des gènes est contrôlée entre autre par les facteurs de transcription et par l'efficacité de la traduction initiée par la coiffe ainsi que par l'activité des ribosomes. Durant cette étude nous avons eu pour but d'identifier les déterminants génomiques responsables de la variabilité de la traduction contrôlée par l'IRES. Ceci a été effectué en étudiant deux IRES représentatifs : l'IRES du virus de l'encéphalomyocardite (EMCV) et l'IRES de l'inhibiteur de l'apoptose XIAP (X-linked Inhibitor-of-Apoptosis). Nous avons utilisés des lentivirus délivrant un transgène bicistronique codant pour deux gènes rapporteurs fluorescents. Ces lentivirus ont été utilisés pour transduire sept différentes lignées cellulaires de laboratoire et des lignées cellulaires lymphoblastoïdes B du Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209) qui représentent une approche in vitro de la structure familiale et qui permettent des analyses par balayage du génome. L'expression relative des deux marqueurs fluorescents a été analysée par FACS. Nos résultats montrent que l'efficacité des IRES varie en fonction du type de cellules. Il varie aussi, pour le même type de cellules, selon les individus. Le contrôle de l'activité de l'IRES est un caractère héritable (héritabilité h2) de 0.47 et 0.36 pour les IRES de EMCV et XIAP respectivement. Le balayage du génome a permis l'identification d'un locus à effets quantitatifs [QTL Quantitative Trait Loci (LOD 2.35)] impliqué dans le contôle de l'activité de l'IRES de XIAP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Each cell is equipped with two copies (alleles) of each autosomal gene. While the vast majority use both alleles, occasional genes are expressed from a single allele. The reason for mono-allelic expression is not always evident and can serve distinct purposes. First, it may facilitate the tight control over the dosage of certain gene products such as some growth factors and their receptors or X-linked genes. Second, the differential usage of the two parental alleles may reflect the mechanisms that ensure mono-specificity, e.g. olfactory receptors, T and B cell receptors. The context of allele-specific expression of the murine Ly49 natural killer (NK) cell receptor genes suggests that their allele-specific expression reflects a process that generates clonal variability.