2 resultados para Women college teachers
em Université de Lausanne, Switzerland
Resumo:
Background/Purpose: The trabecular bone score (TBS), a novel graylevel texture index determined from lumbar spine DXA scans, correlates with 3D parameters of trabecular bone microarchitecture known to predict fracture. TBS may enhance the identification of patients at increased risk for vertebral fracture independently of bone mineral density (BMD) (Boutroy JBMR 2010; Hans JBMR 2011). Denosumab treatment for 36 months decreased bone turnover, increased BMD, and reduced new vertebral fractures in postmenopausal women with osteoporosis (Cummings NEJM 2009). We explored the effect of denosumab on TBS over 36 months and evaluated the association between TBS and lumbar spine BMD in women who had DXA scans obtained from eligible scanners for TBS evaluation in FREEDOM. Methods: FREEDOM was a 3-year, randomized, double-blind trial that enrolled postmenopausal women with a lumbar spine or total hip DXA T-score __2.5, but not __4.0 at both sites. Women received placebo or 60 mg denosumab every 6 months. A subset of women in FREEDOM participated in a DXA substudy where lumbar spine DXA scans were obtained at baseline and months 1, 6, 12, 24, and 36. We retrospectively applied, in a blinded-to-treatment manner, a novel software program (TBS iNsightR v1.9, Med-Imaps, Pessac, France) to the standard lumbar spine DXA scans obtained in these women to determine their TBS indices at baseline and months 12, 24, and 36. From previous studies, a TBS _1.35 is considered as normal microarchitecture, a TBS between 1.35 and _1.20 as partially deteriorated, and 1.20 reflects degraded microarchitecture. Results: There were 285 women (128 placebo, 157 denosumab) with a TBS value at baseline and _1 post-baseline visit. Their mean age was 73, their mean lumbar spine BMD T-score was _2.79, and their mean lumbar spine TBS was 1.20. In addition to the robust gains in DXA lumbar spine BMD observed with denosumab (9.8% at month 36), there were consistent, progressive, and significant increases in TBS compared with placebo and baseline (Table & Figure). BMD explained a very small fraction of the variance in TBS at baseline (r2_0.07). In addition, the variance in the TBS change was largely unrelated to BMD change, whether expressed in absolute or percentage changes, regardless of treatment, throughout the study (all r2_0.06); indicating that TBS provides distinct information, independently of BMD. Conclusion: In postmenopausal women with osteoporosis, denosumab significantly improved TBS, an index of lumbar spine trabecular microarchitecture, independently of BMD.
Resumo:
Sex differences in circadian rhythms have been reported with some conflicting results. The timing of sleep and length of time in bed have not been considered, however, in previous such studies. The current study has 3 major aims: (1) replicate previous studies in a large sample of young adults for sex differences in sleep patterns and dim light melatonin onset (DLMO) phase; (2) in a subsample constrained by matching across sex for bedtime and time in bed, confirm sex differences in DLMO and phase angle of DLMO to bedtime; (3) explore sex differences in the influence of sleep timing and length of time in bed on phase angle. A total of 356 first-year Brown University students (207 women) aged 17.7 to 21.4 years (mean = 18.8 years, SD = 0.4 years) were included in these analyses. Wake time was the only sleep variable that showed a sex difference. DLMO phase was earlier in women than men and phase angle wider in women than men. Shorter time in bed was associated with wider phase angle in women and men. In men, however, a 3-way interaction indicated that phase angles were influenced by both bedtime and time in bed; a complex interaction was not found for women. These analyses in a large sample of young adults on self-selected schedules confirm a sex difference in wake time, circadian phase, and the association between circadian phase and reported bedtime. A complex interaction with length of time in bed occurred for men but not women. We propose that these sex differences likely indicate fundamental differences in the biology of the sleep and circadian timing systems as well as in behavioral choices.