1 resultado para Wind farms
em Université de Lausanne, Switzerland
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (7)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (5)
- Aquatic Commons (23)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (16)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (19)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (84)
- CentAUR: Central Archive University of Reading - UK (199)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (5)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Dalarna University College Electronic Archive (4)
- Digital Archives@Colby (10)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (33)
- Instituto Politécnico do Porto, Portugal (14)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (31)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (165)
- Queensland University of Technology - ePrints Archive (122)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (22)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Universidad Politécnica de Madrid (32)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (1)
- University of Washington (6)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.