3 resultados para Wildlife management areas--South Carolina--Colleton County--Maps

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models predicting species spatial distribution are increasingly applied to wildlife management issues, emphasising the need for reliable methods to evaluate the accuracy of their predictions. As many available datasets (e.g. museums, herbariums, atlas) do not provide reliable information about species absences, several presence-only based analyses have been developed. However, methods to evaluate the accuracy of their predictions are few and have never been validated. The aim of this paper is to compare existing and new presenceonly evaluators to usual presence/absence measures. We use a reliable, diverse, presence/absence dataset of 114 plant species to test how common presence/absence indices (Kappa, MaxKappa, AUC, adjusted D-2) compare to presenceonly measures (AVI, CVI, Boyce index) for evaluating generalised linear models (GLM). Moreover we propose a new, threshold-independent evaluator, which we call "continuous Boyce index". All indices were implemented in the B10MAPPER software. We show that the presence-only evaluators are fairly correlated (p > 0.7) to the presence/absence ones. The Boyce indices are closer to AUC than to MaxKappa and are fairly insensitive to species prevalence. In addition, the Boyce indices provide predicted-toexpected ratio curves that offer further insights into the model quality: robustness, habitat suitability resolution and deviation from randomness. This information helps reclassifying predicted maps into meaningful habitat suitability classes. The continuous Boyce index is thus both a complement to usual evaluation of presence/absence models and a reliable measure of presence-only based predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method based on a geographical information system (GIS) to model ecological networks in a fragmented landscape. The ecological networks are generated with the help of a landscape model (which integrate human activities) and with a wildlife dispersal model. The main results are maps which permit the analysis and the understanding of the impact of human activities on wildlife dispersal. Three applications in a study area are presented: ecological networks at the landscape scale, conflicting areas at the farmstead scale and ecological distance between biotopes. These applications show the flexibility of the model and its potential to give information on ecological networks at different planning scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim The jaguar, Panthera onca, is a species of global conservation concern. In Mexico, the northernmost part of its distribution range, its conservation status, is particularly critical, while its potential and actual distribution is poorly known. We propose an ensemble model (EM) of the potential distribution for the jaguar in Mexico and identify the priority areas for conservation.Location Mexico.Methods We generated our EM based on three presence-only methods (Ecological Niche Factor Analysis, Mahalanobis distance, Maxent) and considering environmental, biological and anthropogenic factors. We used this model to evaluate the efficacy of the existing Mexican protected areas (PAs), to evaluate the adequacy of the jaguar conservation units (JCUs) and to propose new areas that should be considered for conservation and management of the species in Mexico.Results Our results outline that 16% of Mexico (c. 312,000 km2) can be considered as suitable for the presence of the jaguar. Furthermore, 13% of the suitable areas are included in existing PAs and 14% are included in JCUs (Sanderson et al., 2002).Main conclusions Clearly much more should be carried out to establish a proactive conservation strategy. Based on our results, we propose here new jaguar conservation and management areas that are important for a nationwide conservation blueprint.