53 resultados para Weak Solution

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-kappaB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-kappaB, however, delayed activation of NF-kappaB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-kappaB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of a project to use the long-lived (T(1/2)=1200a) (166m)Ho as reference source in its reference ionisation chamber, IRA standardised a commercially acquired solution of this nuclide using the 4pibeta-gamma coincidence and 4pigamma (NaI) methods. The (166m)Ho solution supplied by Isotope Product Laboratories was measured to have about 5% Europium impurities (3% (154)Eu, 0.94% (152)Eu and 0.9% (155)Eu). Holmium had therefore to be separated from europium, and this was carried out by means of ion-exchange chromatography. The holmium fractions were collected without europium contamination: 162h long HPGe gamma measurements indicated no europium impurity (detection limits of 0.01% for (152)Eu and (154)Eu, and 0.03% for (155)Eu). The primary measurement of the purified (166m)Ho solution with the 4pi (PC) beta-gamma coincidence technique was carried out at three gamma energy settings: a window around the 184.4keV peak and gamma thresholds at 121.8 and 637.3keV. The results show very good self-consistency, and the activity concentration of the solution was evaluated to be 45.640+/-0.098kBq/g (0.21% with k=1). The activity concentration of this solution was also measured by integral counting with a well-type 5''x5'' NaI(Tl) detector and efficiencies computed by Monte Carlo simulations using the GEANT code. These measurements were mutually consistent, while the resulting weighted average of the 4pi NaI(Tl) method was found to agree within 0.15% with the result of the 4pibeta-gamma coincidence technique. An ampoule of this solution and the measured value of the concentration were submitted to the BIPM as a contribution to the Système International de Référence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://resfranco.cochrane.org/sites/resfranco.cochrane.org/files/uploads/Arrettabac2009.pdf

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME : Bien que les propriétés physiques de la structure de l'ADN aient été intensivement étudiées pendant plus de 50 ans il y a encore beaucoup de questions importantes qui attendent des réponses. Par exemple, qu'arrive-t-il à la structure de la double hélice d'ADN nue (sans protéines liées) lorsqu'elle est fortement courbée, de la même manière que dans les nucléosomes? Cet ADN nu est-il facilement plié (il reste dans le régime élastique) ou réduit-il la contrainte de flexion en formant des sites hyperflexibles «kinks» (il sort du régime élastique en cassant l'empilement des paires de bases à certains endroits) ? La microscopie électronique peut fournir une réponse à cette question par visualisation directe des minicercles d'ADN de la longueur d'un tour de nucléosome (environ 90 paires de bases). Pour que la réponse soit scientifiquement valide, on doit observer les molécules d'ADN lorsqu'elles sont en suspension dans la solution d'intérêt et sans que des colorations, produits chimiques ou fixatifs n'aient été ajoutés, étant donné que ceux-ci peuvent changer les propriétés de l'ADN. La technique de la cryo-microscopie électronique (cryo-EM) développée par le groupe de Jacques Dubochet au début des années 80, permet la visualisation directe des molécules d'ADN suspendues dans des couche minces vitrifiées de solutions aqueuses. Toutefois, le faible contraste qui caractérise la cryo-EM combinée avec la très petite taille des minicercles d'ADN rendent nécessaire l'optimisation de plusieurs étapes, aussi bien dans la préparation des échantillons que dans le processus d'acquisition d'images afin d'obtenir deux clichés stéréo qui permettent la reconstruction 3-D des minicercles d'ADN. Dans la première partie de ma thèse, je décris l'optimisation de certains paramètres pour la cryoEM et des processus d'acquisition d'image utilisant comme objets de test des plasmides et d'autres molécules d'ADN. Dans la deuxième partie, je .décris comment j'ai construit les minicercles d'ADN de 94 bp et comment j'ai introduit des modifications structurelles comme des coupures ou des lacunes. Dans la troisième partie, je décris l'analyse des reconstructions des rninicercles d'ADN. Cette analyse, appuyée par des tests biochimiques, indique fortement que des molécules d'ADN sont capables de former de petites molécules circulaires de 94 bp sans dépasser les limites d'élasticité, indiquant que les minicercles adoptent une forme circulaire régulière où la flexion est redistribuée le long la molécule. ABSTRACT : Although physical properties of DNA structure have been intensively studied for over 50 years there are still many important questions that need to be answered. For example, what happens to protein-free double-stranded DNA when it is strongly bent, as in DNA forming nucleosomes? Is such protein-free DNA smoothly bent (i.e. it remains within elastic limits of DNA rigidity) or does it release its bending stress by forming sharp kinks (i.e. it exits the elastic regime and breaks the stacking between neighbouring base-pairs in localized regions)? Electron microscopy can provide an answer to this question by directly visualizing DNA minicircles that have the size of nucleosome gyres (ca 90 bp). For the answer to be scientifically valid, one needs to observe DNA molecules while they are still suspended in the solution of interest and no staining chemicals or fixatives have been added since these can change the properties of the DNA. CryoEM techniques developed by Jacques Dubochet's group beginning in the 1980's permit direct visualization of DNA molecules suspended in cryo-vitrified layers of aqueous solutions. However, a relatively weak contrast of cryo-EM preparations combined with the very small size of the DNA minicircles made it necessary to optimize many of the steps and parameters of the cryo-EM specimen preparation and image acquisition processes in order to obtain stereo-pairs of images that permit the 3-D reconstruction of the observed DNA minicircles. In the first part of my thesis I describe the optimization of the cryo-EM preparation and the image acquisition processes using plasmid size DNA molecules as a test object. In the second part, I describe how I formed the 94 by DNA minicircles and how I introduced structural modifications like nicks or gaps. In the third part, I describe the cryo-EM analysis of the constructed DNA minicircles. That analysis, supported by biochemical tests, strongly indicates that DNA minicircles as small as 94 by remain within the elastic limits of DNA structure, i.e. the minicircles adopt a regular circular shape where bending is redistributed along the molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weak selection approximation of population genetics has made possible the analysis of social evolution under a considerable variety of biological scenarios. Despite its extensive usage, the accuracy of weak selection in predicting the emergence of altruism under limited dispersal when selection intensity increases remains unclear. Here, we derive the condition for the spread of an altruistic mutant in the infinite island model of dispersal under a Moran reproductive process and arbitrary strength of selection. The simplicity of the model allows us to compare weak and strong selection regimes analytically. Our results demonstrate that the weak selection approximation is robust to moderate increases in selection intensity and therefore provides a good approximation to understand the invasion of altruism in spatially structured population. In particular, we find that the weak selection approximation is excellent even if selection is very strong, when either migration is much stronger than selection or when patches are large. Importantly, we emphasize that the weak selection approximation provides the ideal condition for the invasion of altruism, and increasing selection intensity will impede the emergence of altruism. We discuss that this should also hold for more complicated life cycles and for culturally transmitted altruism. Using the weak selection approximation is therefore unlikely to miss out on any demographic scenario that lead to the evolution of altruism under limited dispersal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.