5 resultados para Waxes
em Université de Lausanne, Switzerland
Resumo:
La cuticule des plantes, composée de cutine, un polyester lipidique complexe et de cires cuticulaires, couvre l'épiderme de la plupart des parties aériennes des plantes. Elle est constituée d'une barrière hydrophobique primaire qui minimise les pertes en eau et en soluté et protège l'organisme de différents stress environnementaux tels que les rayons UV, la dessiccation et l'infection par des pathogènes. Elle est aussi impliquée dans la délimitation des organes durant le développement. La cutine est un polyester qui, dans la plupart des espèces végétales, est principalement composé d'acides gras ω-hydroxylés composé de 16 à 18 carbones. Cependant, la cutine des feuilles d'Arabidopsis a une composition différente et est principalement constituée d'acides dicarboxyliques à 16-18 carbones. Les cires sont présentes dans le polyester de la cutine ou le recouvrent. Chez Arabidopsis, un nombre de mutants, tel que 1er, bdg, hth, att1, wbc11, et des plantes transgéniques avec différents changement dans la structure de la cuticule dans les feuilles et la tige, ont récemment été décrits et servent d'outils pour étudier la relation entre la structure et la fonction de la cuticule.7 mutants d'Arabidopsis ont été isolés par une méthode de coloration qui permet de détecter une augmentation dans la perméabilité cuticulaire. Ces mutants ont été appelés pec pour permeable cuticle.Pour la première partie de mon projet, j'ai principalement travaillé avec pec9/bre1 (permeable cuticle 9/botrytis resistance 1). PEC9/BRE1 a été identifié comme étant LACS2 (LONG CHAIN ACYL-CoA SYNTHETASE 2). Dans ce mutant, la cuticule n'est pas visible sous microscopie électronique et la quantité en acides gras omega- hydroxylés et en leurs dérivés est fortement réduite. Ces altérations conduisent à une plus grande perméabilité de la cuticule qui est mise en évidence par une plus grande sensibilité à la sécheresse et aux xénobiotiques et une coloration plus rapide par bleu de toluidine. Le mutant Iacs2 démontre aussi une grande capacité de résistance à l'infection du champignon nécrotrophique B. cinerea. Cette résistance est due à l'extrusion sur les feuilles d'un composé antifongique durant l'infection. Ce travail a été publié dans EMBO journal (Bessire et al., 2007, EMBO Journal).Mon second projet était principalement concentré sur pec1, un autre mutant isolé par le premier crible. La caractérisation de pec1 a révélé des phénotypes similaires à ceux de Iacs2, mais à chaque fois dans des proportions moindres : sensibilité accrue à la sécheresse et aux herbicides, plus grande perméabilité au bleu de toluidine et au calcofluor white, altération de la structure cuticulaire et résistance à B. cinerea à travers la même activité antifongique. PEC1 a été identifié comme étant AtPDR4. Ce gène code pour un transporteur ABC de la famille PDR ("Pleiotropic Drugs Resistance") qui sont des transporteurs ayants un large spectre de substrats. Le mutant se différencie de Iacs2, en cela que la composition en acides gras de la cuticule n'est pas autant altérée. C'est principalement le dihydroxypalmitate des fleurs dont la quantité est réduite. L'expression du gène marqué avec une GFP sous le contrôle du promoteur endogène a permis de localiser le transporteur au niveau de la membrane plasmique des cellules de l'épiderme, de manière polaire. En effet, la protéine est principalement dirigée vers l'extérieure de la plante, là où se trouve la cuticule, suggérant une implication d'AtPDR4 dans le transport de composants de la cuticule. Ce travail est actuellement soumis à Plant Cell.Une étude phylogénétique a aussi montré qu'AtPDR4 était très proche d'OsPDR6 du riz. Le mutant du riz a d'ailleurs montré des phénotypes de nanisme et de perméabilité similaire au mutant chez Arabidopsis.AbstractThe cuticle, consisting principally of cutin and cuticular waxes, is a hydrophobic layer of lipidic nature, which covers all aerial parts of plants and protects them from different abiotic and biotic stresses. Recently, the research in this area has given us a better understanding of the structure and the formation of the cuticle. The Arabidopsis mutants permeable cuticle 1 (peel) and botrytis resistance 1 (brel) were identified in two screens to identify permeable cuticles. The screens used the fluorescent dye calcofluor to measure permeability and also resistance to the fungal pathogen Botrytis. These mutants have highly permeable cuticle characteristics such as higher water loss, intake of chemicals through the cuticle, higher resistance to Botrytis cinerea infection, and organ fusion.BRE1 was cloned and found to be LACS2, a gene previously identified which is important in the formation and biosynthetic pathway of the cuticle. In brel, the amount of the major component of cutin in Arabidopsis leaves and stems, dicarboxylic acids, is five times lower than in the wild type. Moreover, the permeability of the cuticle allows the release of antifungal compounds at the leaf surface that inhibits the growth of two necrotrophic fungi: Botrytis cinerea and Sclerotinia sclerotiorum.PEC1 was identified as AtPDR4, a gene that codes for a plasma membrane transporter of the Pleiotropic Drug Resistance family, a sub-family of the ABC- transporters. AtPDR4 is strongly expressed in the epidermis of expanding tissues. In the epidermis it is located in a polar manner on the external plasma membrane, facing the cuticle. Analysis of the monomer composition of the cutin reveals that in this mutant the amount of hydroxy-acids and dihydroxy-palmitate is 2-3 times lower in flowers, in which organ these cutin monomers are the major components. Thus AtPDR4 is thought to function as a putative cutin monomer transporter.
Resumo:
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Resumo:
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.
Resumo:
Cytosolic acetyl-CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over-expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl-CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl-CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl-CoA to endogenous pathways. Increasing the ACL activity via the over-expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady-state mRNA or protein level, indicating a post-translational regulation of ACL activity in response to sink strength. Over-expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over-expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four- and two-fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over-expression of ACL also changed the amount of the cutin monomer octadecadien-1,18-dioic acid, revealing an unsuspected link between cytosolic acetyl-CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl-CoA, including wax and polyisoprenoids.
Resumo:
Most aerial parts of the plants are covered by a hydrophobic coating called cuticle. The cuticle is formed of cutin, a complex mixture of esterified fatty acids that are embedded and associated with waxes. The cuticle often appears as a superposition of layers of different composition: The cuticle proper formed of cutin and a mixture of waxes and underneath, the cuticle layer containing cutin, intracuticular waxes and polysaccharides of the cell wall. In addition to its involvement in plant development by preventing organ fusions, the cuticle acts as a barrier to prevent water loss and protect plants against environmental aggressions such as excessive radiation or pathogens attacks. PEC1/AtABCG32 is an ABC transporter from the PDR family involved in cutin biosynthesis. Characterization of the peci mutant in Arabidopsis thaliana showed that PEC1 plays a significant role in the diffusion barrier formation in leaves and petals. The cuticles of leaves and flowers of peci are permeable and the cuticular layer rather than the cuticular proper was altered in the petals, underlining the importance of this particular layer in the maintenance of the diffusion barrier. Chemical analysis on the flower cutin monomer composition of ped mutant revealed a decrease in hydroxylated cutin monomers, suggesting a function of PEC1 in the incorporation of these monomers in the polymer cutin. However, the exact nature of the substrates of PEC1 remained elusive. PEC1 homologues in barley and rice, respectively HvABCG31/EIBI1 and OsABCG31, are also implicated in cuticle biosynthesis. Interestingly, the rice mutant displays more severe phenotypes such as dwarfism and spreading necrosis conducting to the seedling death. In this work, we further characterized osabcg31 mutant and hairpin-RNAi downregulated OsABCG31 plant lines showing reduced growth and cuticle permeability. Our analysis showed a decrease in hydroxylated cutin monomers and severe disruptions in the cuticle, which explain the permeability. Further insights into the function of the cuticle in rice resistance/susceptibility to Pathogens were obtained after inoculation with Magnaporthe oryzae, the fungus responsible for the rice blast disease. Osabcg31 as well as the transgenic lines downregulating OsABCG31 showed increased resistance to the fungus. However, only later steps of infection are reduced . and no impact is obseived on the germination or penetration stages, suggesting that the cuticle disruption per se is not responsible for the resistance. We further investigated the cause of the resistance by analyzing the expression of defense related gene in osabcg31 prior to infection. We found that osabcg31 constitutively express defense related genes, which may explain the resistance, the dwarfism and the cell death. osabcg31 is thus a tool to study the connection between cuticle, plant development and defense signaling networks in rice. The transport function of PEC1 family members is still unknown. In order to link cutin biosynthesis and transport activity, we combined ped mutation with mutations in cutin synthesis related genes. Here, we show that PEC1 acts independently from GPAT4 and GPAT8 pathway and partially overlaps with GPAT6 biosynthesis pathway that leads to the production of hydroxylated C16 cutin precursor 2-Mono(10,16-dihydroxyhexadecanoylJglycerol (2-MHG). In addition, we noticed that despite a comparable cutin monomer composition, ped mutant leaves cuticle are permeable while that of gpat6 mutant are not. This finding raises the possibility of PEC1 being required for the incorporation of C16 hydroxylated monomers and their structural arrangement rather than their direct transport towards the cuticle. A careful investigation of the cuticle permeability, cutin composition and ultrastructure during leave development in Wt plants and ped mutants revealed a possible different regulation of several pathways of cutin biosynthesis and showed the importance of PEC1 function early during leave cuticle maturation. In order to elucidate the transport activity of PEC1, we successfully expressed PEC1 in Nicotiana benthamiana plant system for direct transport experiments. This system will be used to test the PEC 1-dependent transport of potential substrates such as sn-2-monoacylglycerol loaded with a hydroxylated C16 fatty acid. -- Toutes les parties aériennes des plantes sont recouvertes d'une couche hydrophobe appelée «cuticule». Cette cuticule est composée de cutine, un polymère d'acides gras estérifiés, et de cires. La cuticule apparaît souvent sous forme de couches superposées: une première couche extérieure appelée «cuticle proper» formée de cutine et d'un mélange de cires, et une deuxième couche, la «cuticle layer», formée de cutine associée à des cires intracuticulaires et des polysaccharides pariétaux. La cuticule joue le rôle de barrière prévenant contre la perte d'eau et les agressions environnementales. AtABCG32/PEC1 est un transporteur ABC de la famille des PDR impliqué dans la synthèse de la cutine. L'étude du mutant peci d'Arabidopsis thaliana a révélé une fonction de PEC1 dans la formation de la barrière de diffusion. La cuticule des feuilles et fleurs de peci est perméable. Des altérations de la «cuticle layer» ont été démontrées, soulignant son importance dans le maintien de la barrière. L'analyse de la composition de la cutine de peci a montré une réduction spécifique en monomères hydroxylés, suggérant un rôle de PEC1 dans leur incorporation dans la cuticule. Cependant, la nature exacte des substrats de PEC1 n'a pas été identifiée. PEC1 possède deux homologues chez l'orge et le riz, respectivement HvABCG31 et OsABCG31, et qui sont impliqués dans la biosynthèse de la cuticule. Chez le riz, des phénotypes plus sévères ont été observés tels que nanisme et nécroses conduisant à la mort des jeunes plants. Dans cette étude, nous avons continué la caractérisation de osabcg31 ainsi que des lignées de riz sous exprimant le gène OsABCG31 et présentant une cuticule perméable tout en ayant une meilleure croissance. Notre étude a démontré une réduction des monomères hydroxylés de cutine et une désorganisation de la structure de la cuticule, aggravée dans le mutant osabcg31. Ce résultat explique la perméabilité observée. Des mformations P|us approfondies sur l'implication de la cuticule dans la résistance aux pathogènes ont été obtenues après inoculation du mutant osabcg31 et les lignées sous- exprimant OsABCG31 avec une souche virulente de Magnaporthe Oryzae, le champignon responsable de la pyriculariose du riz. Les différentes lignées testées ont démontré une résistance au pathogène. Cependant, seules les étapes tardives de l'infection sont réduites et aucun impact n'est observé sur la germination des spores ou la pénétration du champignon, suggérant que les modifications de la cuticule ne sont pas directement à l'origine de la résistance. L'analyse de l'expression de gènes impliqués dans la résistance à Magnaporthe.oryzae a mis en évidence l'expression constitutive de ces gènes en l'absence de tout contact avec le pathogène. Ceci explique la résistance, le nanisme et la mort cellulaire observés. Ainsi, osabcg31 représente un outil efficace pour l'étude intégrée des systèmes de régulation de la défense, de développement des plantes et la cuticule. La nature des substrats transportés par PEC1/AtABCG32 reste inconnue. Dans le but d'établir une liaison entre biosynthèse de cutine et transport des précurseurs par PEC1, la mutation peci a été combinée avec des mutants impliqués dans différentes voies de biosynthèse. Cette étude a démontré une fonction indépendante de PEC1 de la voie de biosynthèse impliquant les enzymes GPAT4 et GPAT8, et une fonction partiellement indépendante de la voie impliquant GPAT6 qui mène à la production de précurseurs sn-2- monoacylglycerol chargés en acides gras en C16 (2-MHG). De plus, malgré un profil similaire en monomères de cutine, gpat6 conserve une cuticule imperméable alors que celle de PEC1 est perméable. Ceci suggère que PEC1 est nécessaire à l'incorporation des monomères en C16 et leur arrangement structurel plutôt que simplement à leur transport direct. L'étude approfondie de la perméabilité cuticulaire, de la structure ainsi que de la composition en cutine pendant le développement des feuilles de peci et la plante sauvage a révélé l'existence de différentes régulations des voies de biosynthèses des monomères et a démontré l'importance de PEC1 dans les premières étapes de la mise en place de la cuticule. Pour identifier les substrats transportés, l'expression de PEC1 chez le système hétérologue Nicotiana benthamiana a été conduite avec succès. Ce système sera utilisé pour tester le transport de substrats potentiels tels que le sn-2-monoacylglycerol chargé en acide gras en C16.