193 resultados para Water Mouse

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Aquaporin-4 (AQP4), a water channel, is induced early after stroke.The role of AQP4 in the development and resolution of oedema after stroke remainsdebated. The absence of AQP4 in KO-mice reduces the cytotoxic oedema formationbut in contrast aggravates the vasogenic edema. Thrombin at high dose is known toinduce an oedema and at a low dose (thrombin preconditioning, TPC), to inducetolerance to ischemia. We studied the expression of AQPs in ischemic mouse brainsafter TPC and correlation with oedema formation.Methods: For thrombin preconditioning (TPC), mice were injected intracerebroventricularlywith a low dose of thrombin (0.1U in 2?l), followed 24 hours laterby a 30 min transient middle cerebral occlusion (MCAo). AQP4 expression wasevaluated by immunohistochemistry 1h and 48h after ischemia and correlated withoedema formation in vehicle injected and TPC mice.Results: After TPC, oedema formation, assessed by hemispheric enlargement, wassignificantly attenuated at 1h (4.5 ± 2% vs 11.0 ± 5% in CTL, p<0.05, n=8),which was confirmed by wet weight/dry weight ratio (79.6 ± 0.3% vs 80.1 ± 0.1in ctl, p<0.05, n=0.05). At the same time-point, AQP4 expression was significantlyincreased in TPC mice, (148.9% of the control, P<0.05, n=6) in the ischemicstriatum. The oedema was still reduced at 48h after stroke onset in TPC mice. At48h, the level of expression for AQP4 was still higher for TPC animal although notreaching significance (NS). The lesion size was significantly reduced at 48h afterstroke in TPC mice (5.1 ± 1.6 vs 10.6 ± 1.8 mm2 in CTL, n=5).Discussion: The correlation between the early induction of AQP4 and the decreaseof oedema formation in TPC mice suggests that the induction of AQP4 preventsthe development of oedema.Funding: FNS #3100A0-108001, #3200 68306.02 & #3100A0-112484 and Swiss-Heart foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by a haematoma within the brain parenchyma resulting from blood vessel rupture and with a poor outcome. In ICH, the blood entry into the brain triggers toxicity resulting in a substantial loss of neurons and an inflammatory response. At the same time, blood-brain barrier (BBB) disruption increases water content (edema) leading to growing intracranial pressure, which in turn worsens neurological outcome. Although the clinical presentation is similar in ischemic and hemorrhagic stroke, the treatment is different and the stroke type needs to be determined beforehand by imaging which delays the therapy. C-Jun N-terminal kinases (JNKs) are a family of kinases activated in response to stress stimuli and involved in several pathways such as apoptosis. Specific inhibition of JNK by a TAT-coupled peptide (XG-102) mediates strong neuroprotection in several models of ischemic stroke in rodents. Recently, we have observed that the JNK pathway is also activated in a mouse model of ICH, raising the question of the efficacy of XG-102 in this model. Method: ICH was induced in the mouse by intrastriatal injection of bacterial collagenase (0,1 U). Three hours after surgery, animals received an intravenous injection of 100 mg/kg of XG-102. The neurological outcome was assessed everyday until sacrifice using a score (from 0 to 9) based on 3 behavioral tests performed daily until sacrifice. Then, mice were sacrificed at 6 h, 24 h, 48 h, and 5d after ICH and histological studies performed. Results: The first 24 h after surgery are critical in our ICH mice model, and we have observed that XG-102 significantly improves neurological outcome at this time point (mean score: 1,8 + 1.4 for treated group versus 3,4+ 1.8 for control group, P<0.01). Analysis of the lesion volume revealed a significant decrease of the lesion area in the treated group at 48h (29+ 11mm3 in the treated group versus 39+ 5mm3 in the control group, P=0.04). XG-102 mainly inhibits the edema component of the lesion. Indeed, a significant inhibition Journal of Cerebral Blood Flow & Metabolism (2009) 29, S490-S493 & 2009 ISCBFM All rights reserved 0271-678X/09 $32.00 www.jcbfm.com of the brain swelling was observed in treated animals at 48h (14%+ 13% versus 26+ 9% in the control group, P=0.04) and 5d (_0.3%+ 4.5%versus 5.1+ 3.6%in the control group, P=0.01). Conclusions: Inhibition of the JNK pathway by XG- 102 appears to lead to several beneficial effects. We can show here a significant inhibition of the cerebral edema in the ICH model providing a further beneficial effect of the XG-102 treatment, in addition to the neuroprotection previously described in the ischemic model. This result is of interest because currently, clinical treatment for brain edema is limited. Importantly, the beneficial effects observed with XG-102 in models of both stroke types open the possibility to rapidly treat stroke patients before identifying the stroke subtype by imaging. This will save time which is precious for stroke outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A remarkable feature of the carcinogenicity of inorganic arsenic is that while human exposures to high concentrations of inorganic arsenic in drinking water are associated with increases in skin, lung, and bladder cancer, inorganic arsenic has not typically caused tumors in standard laboratory animal test protocols. Inorganic arsenic administered for periods of up to 2 yr to various strains of laboratory mice, including the Swiss CD-1, Swiss CR:NIH(S), C57Bl/6p53(+/-), and C57Bl/6p53(+/+), has not resulted in significant increases in tumor incidence. However, Ng et al. (1999) have reported a 40% tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. In order to investigate the potential role of tissue dosimetry in differential susceptibility to arsenic carcinogenicity, a physiologically based pharmacokinetic (PBPK) model for inorganic arsenic in the rat, hamster, monkey, and human (Mann et al., 1996a, 1996b) was extended to describe the kinetics in the mouse. The PBPK model was parameterized in the mouse using published data from acute exposures of B6C3F1 mice to arsenate, arsenite, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) and validated using data from acute exposures of C57Black mice. Predictions of the acute model were then compared with data from chronic exposures. There was no evidence of changes in the apparent volume of distribution or in the tissue-plasma concentration ratios between acute and chronic exposure that might support the possibility of inducible arsenite efflux. The PBPK model was also used to project tissue dosimetry in the C57Bl/6J study, in comparison with tissue levels in studies having shorter duration but higher arsenic treatment concentrations. The model evaluation indicates that pharmacokinetic factors do not provide an explanation for the difference in outcomes across the various mouse bioassays. Other possible explanations may relate to strain-specific differences, or to the different durations of dosing in each of the mouse studies, given the evidence that inorganic arsenic is likely to be active in the later stages of the carcinogenic process. [Authors]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription-PCR. The hepatocyte nuclear transcription factor HNF-3-alpha (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé L'accident vasculaire cérébral sensoriel pur est un des syndromes lacunaires, dû à l'occlusion de petits vaisseaux cérébraux, souvent dans le cadre d'une lésion intéressant le noyau ventro-caudal du thalamus. Il produit un hémisyndrome sensitif pur, et parfois un syndrome douloureux se développe à distance de l'événement aigu. Afin d'étudier la récupération fonctionnelle dans le cortex somatosensoriel (SI) après une telle lésion dans le thalamus, un modèle de lésion excitotoxique a été développé dans le système somatosensoriel de la souris adulte, caractérisé par la présence de formations cytoarchitectoniques dans SI appelées "tonneaux". Chacun de ces tonneaux correspond à la représentation corticale d'une vibrisse du museau. L'activité métabolique a été mesurée dans SI à différents intervalles après la lésion, à l'aide de déoxyglucose marqué radioactivement. Dans les deux premiers jours suivant celle-ci, l'activité métabolique diminue de manière importante dans toutes les couches corticales, avec une atteinte plus marquée dans la couche IV, principale projection des axones thalamo-corticaux. Une récupération de l'activité métabolique se produit ensuite, d'autant plus marquée que le délai après la lésion est grand. Cette récupération s'observe dans toutes les couches coticales, les couches I et Vb récupérant plus rapidement que les couches II, III, IV, Va et VI. Cinq semaines après la lésion, l'absence des vibrisses correspondant à la partie déafférentée de SI diminue l'activité métabolique corticale de 32% et démontre l'activation par la périphérie de cette partie de l'écorce, malgré la perte des axones thalamo-corticaux provenant du noyau ventro-caudal. Des expériences de traçage rétrograde ont montré une augmentation des projections intracorticales sur la partie déafférentée de l'écorce, en particulier de longue distance, ainsi que des projections interhémisphériques, mais n'ont pas permis de mettre en évidence de nouvelle projection thalamique, indiquant une origine corticale à la récupération fonctionnelle observée. Abstract To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers, however, layers I and Vb recover more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input, but cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the common assumption that orthologs usually share the same function, there have been various reports of divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is of special interest, because mouse is often used as a model organism to understand human biology. We review the literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context of biomedical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.