13 resultados para Wagner, Dvorak, Czech lands

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The late Variscan (275-278 Ma) Pribram uranium deposit is one of the largest known accumulations of uraniferous bitumens in hydrothermal veins. The deposit extends along the northwestern boundary of the Central Bohemian pluton (345-335 Ma) with low-grade metamorphosed Late Proterozoic and unmetamorphosed Cambrian rocks. From a net uranium production of 41,742 metric tons (t), more than 6,000 t were extracted from bitumen-uraninite ores during 43 years of exploration and mining. Three morphological varieties of solid bitumen are recognized: globular, asphaltlike, and cokelike. While the globular bitumen is uranium free, the other two types are uraniferous. The amount of bitumen in ore veins gradually decreases toward the contact with the plutonic body and increases with depth. Two types of bitumen microtextures are recognized using high-resolution transmission electron microscopy: amorphous and microporous, the former being less common in uraniferous samples. A lower Raman peak area ratio (1,360/1,575 cm(-1)) in mineralized bitumens (0.9) compared with uranium-free samples (2.0) indicates a lower degree of microtextural organization in the latter The H/C and O/C atomic ratios in uranium-free bitumens (0.9-1.1 and 0.09, respectively) are higher than those in mineralized samples (H/C = 0.3-0.8, O/C = 0.03-0.09). The chloroform extractable matter yield is Very low in uranium-free bitumens (0.30-0.35% of the total organic carbon,TOC) and decreases with uranium content increase. The extracted solid uraniferous bitumen infrared spectra show depletion in aliphatic CH2 and CH3 groups compared to uranium-free samples. The concentration of oxygen-bearing functional groups relative to aromatic bonds in the IR spectra of uranium-free and mineralized bitumen, however, do not differ significantly. C-13 NMR confirmed than the aromaticity of a uraniferous sample is higher (F-ar = 0.61) than in the uranium-free bitumen (F-ar = 0.51). Pyrolysates from uraniferous and nonuraniferous bitumens do not differ significantly, being predominantly cresol, alkylphenols, alkylbenzenes, and alkylnaphthalenes. The liquid pyrolysate yield decreases significantly with increasing uranium content. The delta(13)C Values of bulk uranium-free bitumens and low-grade uraniferous, asphaltlike bitumens range from -43.6 to 52.3 per mil. High-grade, cokelike, uraniferous bitumens are more C-13 depleted (54.5 to -58.4 parts per thousand). In contrast to the very light isotopic ratios of the high-grade uraniferous cokelike bitumen bulk carbon, the individual n-alkanes and isoprenoids (pristane and phytane) extracted from the same sample are significantly C-13 enriched. The isotopic composition of the C13-24 n-alkanes extracted from the high-grade uraniferous sample (delta(13)C = -28.0 to 32.6 parts per thousand) are heavier compared with the same compounds in a uranium-free sample (delta(13)C = 31.9 to 33.8 parts per thousand). It is proposed that the bitumen source was the isotopically light (delta(13)C = 35.8 to 30.2 parts per thousand) organic matter of the Upper Proterozoic host rocks that were pyrolyzed during intrusion of the Central Bohemian pluton. The C-13- depleted pyrolysates were mobilized from the innermost part of the contact-metamorphic aureole, accumulated in structural traps in less thermally influenced parts of the sedimentary complex and were later extracted by hydrothermal fluids. Bitumens at the Pribram deposit are younger than the main part of the uranium mineralization and were formed through water-washing and radiation-induced polymerization of both the gaseous and liquid pyrolysates. Direct evidence for pyrolysate reduction of uranium in the hydrothermal system is difficult to obtain as the chemical composition of the original organic fluid phase was modified during water-washing and radiolytic alteration. However, indirect evidence-e.g., higher O/C atomic ratios in uranium-free bitumens (0.1) relative to the Upper Proterozoic source rocks (0.02-0.05), isotopically very light carbon in associated whewellite (delta(13)C = 31.7 to -28.4 parts per thousand), and the striking absence of bitumens in the pre-uranium, hematite stage of the mineralization-indicates that oxidation of organic fluids may have contributed to lowering of aO(2) and uraninite precipitation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baudelaire a consacré un seul essai à la musique, dans les dernières années de sa vie. Cet essai porte sur un unique compositeur, Richard Wagner, à une époque où l'esthétique du regard du poète est déjà formée depuis longtemps. De plus, Baudelaire « ne sait pas la musique », comme il l'écrit lui-même au musicien dans une longue lettre. Et pourtant, l'essai sur Wagner s'inscrit parfaitement dans les textes critiques de Baudelaire consacrés à l'art : l'image et l'imagination tiennent lieu, ici aussi, de modèles épistémologiques. La méconnaissance du langage musical est ainsi rachetée par la connaissance de l'image - mais la connaissance de l'image, de sa dimension scripturale, demeure quant à elle impensée. Ce point aveugle caractérise ce que l'on peut appeler l'esthétique de la Modernité.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.