4 resultados para Viterbi realignment
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: The aim of the current study was to investigate the biomechanical stability and fixation strength provided by a posterior approach reconstruction technique to realign the craniovertebral junction.¦METHODS: We tested seven human cadaver occipito-cervical spines (occiput-C4) by applying pure moments of ±1.5 Nm on a spine tester. Each specimen was tested in the following modes: 1) intact; 2) injured; 3) spacers alone at C1-C2 articulation (S); 4) spacers plus C1-C2 Posterior Instrumentation (S+PI); and 5) spacers plus C1-C2 posterior instrumentation plus midline wiring (S+PI+MLW). C1-C2 range of motion for each construct was obtained in flexion-extension, lateral bending, and axial rotation.¦RESULTS: In all the loading modes, S, S+PI, and S+PI+MLW constructs significantly reduced range of motion compared with the intact and injured condition (P < 0.05). There was no statistical difference between any of the three instrumentation constructs (P > 0.05).¦CONCLUSIONS: This study investigated the biomechanics of the posterior approach technique for realignment of the craniovertebral junction and also made comparisons with additional posterior fixations. The stand-alone spacers were stable in all three loading modes. Posterior instrumentation increased the stability as compared to stand-alone spacers. The third point of fixation, carried out by using midline wiring, increased the stability further. However, there was not much difference in the stability imparted with the midline wiring versus without. The present study highlights the biomechanics of this novel concept and reaffirms the view that distraction of the C1-C2 articular facets and direct articular joint atlantoaxial fixation would be an ideal method of management of basilar invagination.
Resumo:
Prismatic adaptation has been shown to induce a realignment of visuoproprioceptive representations and to involve parietocerebellar networks. We have investigated in humans how far other types of functions known to involve the parietal cortex are influenced by a brief exposure to prismatic adaptation. Normal subjects underwent an fMRI evaluation before and after a brief session of prismatic adaptation using rightward deviating prisms for one group or after an equivalent session using plain glasses for the other group. Activation patterns to three tasks were analyzed: (1) visual detection; (2) visuospatial short-term memory; and (3) verbal short-term memory. The prismatic adaptation-related changes were found bilaterally in the inferior parietal lobule when prisms, but not plain glasses, were used. This effect was driven by selective changes during the visual detection task: an increase in neural activity was induced on the left and a decrease on the right parietal side after prismatic adaptation. Comparison of activation patterns after prismatic adaptation on the visual detection task demonstrated a significant increase of the ipsilateral field representation in the left inferior parietal lobule and a significant decrease in the right inferior parietal lobule. In conclusion, a brief exposure to prismatic adaptation modulates differently left and right parietal activation during visual detection but not during short-term memory. Furthermore, the visuospatial representation within the inferior parietal lobule changes, with a decrease of the ipsilateral hemifield representation on the right and increase on the left side, suggesting thus a left hemispheric dominance.
Resumo:
Introduction: The primary somatosensory cortex (SI) contains Brodmann areas (BA) 1, 2, 3a, and 3b. Research in non-human primates showed that BAs 3b, 1, and 2 each contain one full representation of the hand with separate representations for each finger. This research also showed that the finger representation in BA3b has larger and clearer finger somatotopy than BA1 and 2. Although several efforts to map finger somatotopy in SI by fMRI have been made at 1.5 and 3T these studies have yielded variable results and were not able to detect single subject finger somatotopy, probably due to the limited spatial extent of the cortical areas representing a digit (close to the resolution in most fMRI experiments), complications due to acquisition of consistent maps for individual subjects (Schweizer et al 2008), or inter-individual variability in sulcal anatomy impeding group studies. Here, we used 7T fMRI to investigate finger somatotopy in SI, some of its functional characteristics, and its reproducibility. Methods: Eight right-handed male subjects were scanned on a 7T scanner (Siemens Medical, Germany) with an 8-channel Tx/Rx rf-coil (Rapid Biomedical, Germany). 1.3x1.3x1.3mm3 resolution fMRI data were acquired using a sinusoidal readout EPI sequence (Speck et al, 2008) and FOV=210mm, TE/TR=27ms/2.5s, GRAPPA=2. Each volume contained 28 transverse slices covering SI. A single EPI volume with 64 slices was acquired to aid coregistration. 1x1x1mm3 anatomical data were acquire using the MP2RAGE sequence (Marques et al, 2009; TE/TR/TI1,2/TRmprage=2.63ms/7.2ms/0.9,3.2s/5s). Subjects were positioned supine in the scanner with their right arm comfortably against the magnet bore. An experimenter was positioned at the entrance of the bore where he could easily reach and stroke successively the two distal phalanxes of each digit. The order of stroked digit was D1 (thumb)-D3-D5-D2-D4, with 20s ON, 10s OFF alternated. This sequence was repeated four times per run and two functional runs were acquired per subject. Realignment, smoothing (FWHM 2 mm), coregistration of the anatomical to the fMRI data and calculation of t-statistics were done using SPM8. An SI mask was obtained via an F-contrast (p<0.001) over all digits. Within the mask, voxels were labeled with the number of the digit demonstrating the highest t-value for that particular voxel. Results: For all subjects, areas corresponding to the five digits were identified in contralateral SI. BA3b showed the most consistent somatotopic finger representation (see an example in Fig.1). The five digits were localized in a consecutive order in the cortex, with D1 most anterior, inferior and distal and D5, most posterior, superior and medial (mean distance between centres of mass of digit representations ±stderr: 4.2±0.7mm; see Fig. 2). The analysis of average beta values within each finger representation region revealed the specificity of the somatotopic region to the tactile input for each tested finger (except digit 4 and 5). Five of these subjects also presented an orderly and consecutive representation of the five digits in BA1 and 2. Conclusions: Our data reveal that the increased BOLD sensitivity at 7T and the high spatial resolution used in this study allow consistent somatotopic mapping using human touch as a stimulus and that human SI contains at least three separate regions that contain five separate representations of all single contralateral fingers. Moreover, adjacent fingers were represented at adjacent cortical regions across the three SI regions. The spatial organization of SI as reflected in individual subject topography corresponds well with previous electrophysiological data in non-human primates. The small distance between digit representations highlights the need for the high spatial resolution available at 7T.
Resumo:
This chapter argues that the electoral competition between the New Left and the Radical Right is best understood as a cultural divide anchored in different class constituencies. Based on individual-level data from the European Social Survey, we analyze the links between voters' class position, their economic and cultural preferences and their party choice for four small and affluent European countries. We find a striking similarity in the class pattern across countries. Everywhere, the New Left attracts disproportionate support from socio-cultural professionals and presents a clear-cut middle-class profile, whereas the Radical Right is most successful among production and service workers and receives least support from professionals. In general, the Radical Right depends on the votes of lowereducated men and older citizens and has turned into a new type of working-class party. However, its success within the working-class is not due to economic, but to cultural issues. The voters of the Radical Right collide with those of the New Left over a cultural conflict of identity and community - and not over questions of redistribution. A full-grown cleavage has thus emerged in the four countries under study, separating a libertarian-universalistic pole from an authoritarian-communitarian pole and going along with a process of class realignment.